01. 0580_m24_ms_42 Q: 2

Question	Answer	Marks	Partial Marks
(a)	y + angle BCD = 180 oe AND angles on a straight line	B2	B1 for angles on a straight line
	AND $x + \text{angle } BCD = 180 \text{ oe}$		OR
	AND opposite angles of a cyclic quadrilateral are supplementary OR angles in opposite segments are supplementary		opposite angles of a cyclic quadrilateral are supplementary OR angles in opposite segments are supplementary
	leading to $x = y$ with no errors		

Question	Answer	Marks	Partial Marks
(b)	Allow any two statements from: CXD is common angle or angle AXB = angle CXD $x = y$ or angle BAX = angle DCX angle ABX = angle CDX	M1	
	States all three equal pairs of angles OR 2/all angles equal so triangles similar	A1	
(c)(i)	6 nfww	3	B2 for $BX = 18$ nfww or M2 for $\frac{24}{12} = \frac{BC + 12}{9}$ oe or M1 for $\frac{24}{12} = \frac{BX}{9}$ oe If 0 scored, SC1 for answer 18
(c)(ii)	4	1	

02. $0580 _s24 _ms_42$ Q: 2

Question	Answer	Marks	Partial Marks
(a)	142	2	B1 for each
	142		FT angle $b = their$ angle a
(b)	150	2	M1 for $\frac{360}{12}$ oe isw or $180 \times (12 - 2)$ oe isw

Question	Answer	Marks	Partial Marks
(c)	56	B1	
	34	B2	M1 for angle at centre = $2 \times their$ 56 oe soi or for angle $OMB = 90$ oe soi
(d)	51	2	B1 for opp angle = 129 soi

AcelGCSE

Paper Perfection. Crafted With Passion

03. $0580 _{s23} _{ms} _{42}$ Q: 1

Question	Answer	Marks	Partial Marks
(a)	111	3	M2 for $180 - \frac{180 - 42}{2}$ oe or $42 + \frac{180 - 42}{2}$ oe or $\frac{180 - 42}{2}$ oe or M1 for $\frac{180 - 42}{2}$ oe
(b)	150	3	M1 for $k \div (3 + 4 + 5) [\times p]$ where $p = 1, 3, 4$ or 5 or $\frac{5}{12}$ oe B1 for 360 used
(c)	$\frac{3}{5}$ cao nfww	4	B3 for $\frac{72}{120}$ or B2 for $[d =]$ 72 or $[h =]$ 120 or M1 for 360 ÷ 5 oe isw or $180 - (360 \div 6)$ isw or for $(6 - 2) \times 180$ [÷ 6]
(d)	x + 2x - 5 + x + 20 + 3x - 40 = 360	M1	Accept equivalent equation e.g. $7x - 25 = 360$
	7x = 360 + 5 - 20 + 40 or better	M1	FT <i>their</i> equation, accept e.g. $7x = 385$
	x = 55	B1	
	55 and 125 or 105 and 75	B1dep	Dep on M1M1B1 Accept $55 + 3 \times 55 - 40 = 180$ or $2 \times 55 - 5 + 55 + 20 = 180$ If B0 scored, SC1 for 55, 75, 105 and 125
	Opposite angles sum to 180 oe [so <i>PQRS</i> is a cyclic quadrilateral]	afted	Dep on M1M1B1B1
(e)	48.7 or 48.69 to 48.70	3	M2 for $\frac{360-50}{360} \times 2 \times \pi \times 9$ oe
			or M1 for $\frac{50}{360} \times 2 \times \pi \times 9$ oe

04. $0580 _{s}23 _{ms}_{42}$ Q: 3

Question	Answer	Marks	Partial Marks
(a)(i)	$\frac{(x+3)(2x+5)}{2} = 60$	M1	Accept $(x + 3)(2x + 5) = 2 \times 60$ or 120 Accept e.g. $(x + 3)(x + 2.5) = 60$ without division by 2 shown for M1 (but not A1)
	$2x^2 + 6x + 5x + 15$ seen	B1	$Accept 2x^2 + 11x + 15 seen$
	$2x^2 + 11x - 105 = 0$	A1	Correct completion after M1B1 with the fraction seen removed with no errors or omissions seen
(a)(ii)	(2x+21)(x-5)[=0]	M2	M1 for partial factors 2x(x-5) + 21(x-5) [= 0] or $x(2x+21) - 5(2x+21) [= 0]$ OR
			(2x + a)(x + b) [= 0] where $ab = -105or 2b + a = 11$
	-10.5 and 5	B1	7

Question	Answer	Marks	Partial Marks
(a)(iii)	61.9 or 61.92 to 61.93	3	M2 for $\tan = \frac{2 \times their 5 + 5}{their 5 + 3}$ oe
			or B1FT for $2 \times their 5 + 5$ and their $5 + 3$
(b)(i)	28.1 or 28.07 to 28.08	3 1	FT their 90 – their (a)(iii) unless their (a)(iii) < 45, in which case FT their (a)(iii)
(b)(ii)	10 Paper Perfection, C	rafte³o	M2 for $(their 5 + 3) \times \sqrt{\frac{93.75}{60}}$ oe
			or M1 for $\sqrt{\frac{93.75}{60}}$ or $\sqrt{\frac{60}{93.75}}$ oe seen
			$\operatorname{or}\left(\frac{their5+3}{x}\right)^2 = \frac{60}{93.75} \operatorname{oe}$

05. 0580_s23_ms_43 Q: 3

Question	Answer	Marks	Partial Marks
(a)(i)	118	1	
(a)(ii)	$X ext{ is } 8.3 ext{ cm from } B$	2	M1 for $(332 \div 200) \times 5$ oe
(a)(iii)	1:4000	2	M1 for $200 \div 5$ or 200×100 , both soi
(b)	1.13 or 1.128 to 1.129	5	M4 for $4.5 \times \sqrt[3]{\frac{0.385 \times 8000}{195200}}$ oe
			or $\sqrt[3]{\frac{4.5^3 \times 0.385 \times 8000}{195200}}$ oe
			or M3 for $\sqrt[3]{\frac{0.385}{their24.4}}$ or $\sqrt[3]{\frac{their3080}{195200}}$
			or $\frac{0.385}{their24.4} = \frac{l^3}{4.5^3}$ oe
		$/\!/$	or M2 for $\frac{their 24.4}{0.385}$ or $\frac{0.385}{their 24.4}$ oe
			or B2 for 24.4 or 3080 seen
			or M1 for 195 200 ÷ 8000 or for 0.385 × 8000

AcelGCSE

Paper Perfection. Crafted With Passion

Question	Answer	Marks	Partial Marks
(a)	246	3	B2 for <i>BCS</i> (outh) = 66 or <i>BCA</i> = 48 and <i>ACN</i> (orth) = 66 or <i>BCW</i> (est) = 24 or <i>ACS</i> (outh) = 114 or B1 for <i>ABC</i> = 66 or <i>BAC</i> = 66 or <i>BCA</i> = 48 or <i>ACN</i> (orth) = 66
(b)(i)	58	1	
(b)(ii)	106	1	
(b)(iii)	47	2	B1 for $PRQ = 27$ or B1FT for SPR , either = 48 or = $106 - their$ (b)(i) or B1FT for $RPQ = their$ (b)(i) – 11
(c)	Radius perpendicular to tangent	1	
	Tangents to circle from a/same point oe	1	
	RHS	1	
	68 angles on a [straight] line add up/sum to 180 oe	1	
	56 [base angles of] isosceles triangle	1	
	OBC = BOT Alternate angles	1	Angles and reason required and dependent on <i>OBC</i> and <i>BOT</i> correct

Paper Perfection. Crafted With Passion

07. $0580_{\mathrm{w}23_{\mathrm{ms}}41}$ Q: 5

Question	Answer	Marks	Partial Marks
(a)	27.3 or 27.32 to 27.33	5	M4 for $tan[\angle ACD] = \frac{83.2}{\frac{83.2}{tan 38} + 54.5}$ oe or M3 for $[AC =] \frac{83.2}{tan 38} + 54.5$ oe or for $[CD =]$
			$\sqrt{54.5^2 + \left(\frac{83.2}{\sin 38}\right)^2 - 2(54.5)\left(\frac{83.2}{\sin 38}\right)\cos(180 - 38)}$ oe or $\mathbf{M2} \text{ for } [AB =] \frac{83.2}{\tan 38} \text{ oe or for } [BD =] \frac{83.2}{\sin 38} \text{ oe}$
			or M1 for tan38 = $\frac{83.2}{AB}$ oe or sin38 = $\frac{83.2}{BD}$ oe
(b)	Centre marked at midpoint of FG. and Angle in a semi-circle is 90	B2	B1 for marking the centre at mid-point of FG

Question	Answer	Marks	Partial Marks
(c)	10.8 or 10.81 to 10.82	7	B2 for 72
	Acel	G	or M1 for $\frac{180}{4+5+6}$ [× 6]
	Paper Perfection	n, Cra	and, for triangle PQR B4 for [angle R=]82.8 or 82.81 to 82.83
			or B3 for $[\cos R =]$ $\frac{5}{40}$ oe or better
			or M2 for $\frac{4^2 + 5^2 - 6^2}{2 \times 4 \times 5}$
			or M1 for $6^2 = 4^2 + 5^2 - 2 \times 4 \times 5 \times \cos R$
			After 0 scored for triangle PQR, SC1 for $[P =] 55.8$ or 55.77 to 55.78 or
			[Q =]41.4 or 41.40 to 41.41

08. $0580 \text{_w}23 \text{_ms} \text{_42}$ Q: 10

Question	Answer	Marks	Partial Marks
(a)	[DEF], BCD	2	B1 for each pair
	ADF, ADB		
(b)	OQ OQT	5	B1 for each
	Tangent perpendicular to radius		
	RHS		
	equal		

09. 0580 w23 ms 43 Q: 4

Question	Answer	Marks	Partial Marks
(a)	144	2	M1 for $180 - \frac{360}{10}$ or $\frac{180(10-2)}{10}$ oe
(b)	w = 20 x = 20 y = 60 z = 45	5	B1 for w B1FT for $x = their w$ B2FT for $y = 80 - their w$ or B1 for angle $BDC = 20$ FT their w or angle $ADE = 55$ or angle $CAD = 25$ B1FT for $z = 25 + their w$ or $105 - their y$
	ACE		JUSE

Paper Perfection, Crafted With Passion

 $10.0580 \text{_m} 22 \text{_ms} \text{_42} \quad Q:6$

Question	Answer	Marks	Partial Marks
(d)	Two pairs of equal angles identified with fully correct reasons	МЗ	M2 for one pair of equal angles identified with fully correct reasons
			<i>KMG</i> = 90 angle in semicircle and <i>OGH</i> = 90 angle between tangent and radius
			OR
			KMG = OGH alternate segment OR
			GOH = MGK alternate angles
			OR
			Angle FGM = angle GHO corresponding and angle FGM = GKM alternate segment and angle H = angle K
			or M1 for $KMG = 90$, angle in semicircle or $OGH = 90$, angle between tangent and radius
	Two or three pairs of angles equal [so similar] oe	A1	Dep on M3 with no incorrect work seen

Question	Answer	Marks	Partial Marks
(d)	Two pairs of equal angles identified with fully correct reasons	М3	M2 for one pair of equal angles identified with fully correct reasons
			KMG = 90 angle in semicircle and $OGH = 90$ angle between tangent and radius OR
			KMG = OGH alternate segment OR
	A C O I		GOH = MGK alternate angles
	ACEI		OR
	Paper Perfection	, Crai	Angle FGM = angle GHO corresponding and angle FGM = GKM alternate segment and angle H = angle K
			or M1 for $KMG = 90$, angle in semicircle or $OGH = 90$, angle between tangent and radius
	Two or three pairs of angles equal [so similar] oe	A1	Dep on M3 with no incorrect work seen

$11.\ 0580_m22_ms_42 \quad Q:\ 7$

Question	Answer	Marks	Partial Marks
(a)	31.5	3	M2 for $17.5 \times \sqrt{\frac{1134}{350}}$ oe or M1 for $\sqrt{\frac{1134}{350}}$ oe isw or $\sqrt{\frac{350}{1134}}$ oe isw or for $\frac{1134}{350} = \left(\frac{x}{17.5}\right)^2$ oe
(b)	163.9375 or $163\frac{15}{16}$ final answer	2	B1 for 15 + 0.25 or 10.5 + 0.25 or better seen
(c)	40.5[0]	2	M1 for $x \times \left(1 - \frac{18}{100}\right) = \frac{166.05}{[5]}$ oe
(d)	\$2.23 final answer	3	B2 for 2.227 or 2.23 seen OR M2 for $57 - \frac{48.2}{0.88}$ oe or M1 for $\frac{48.2}{0.88}$ oe If 0 scored SC1 for 57×0.88 oe seen

12. 0580_s22_ms_42 Q: 2

Question	Answer	Marks	Partial Marks
(a)	PQR = 90 angle in semi-circle	B1	
	PRQ = 61 angle sum of triangle $[= 180]$	B1	
	PSQ = 61 angle in same segment	B1	If 0 scored SC1 for $PSQ = PRQ$ [= 61] soi
(b)	57	4	$\mathbf{B1} \text{ for } ABT = 98$
	Acei	U	B1 for TAB or $ATB = 41$
	Paper Perfection	n,Cra	$ \mathbf{B1} $ for $BTC = 41$ or $TBC = 82$ or $ATC = 82$ soi

13. $0580_s22_ms_42$ Q: 9

Question	Answer	Marks	Partial Marks
(a)	$PMR = MSR = \text{right angle[s] or } 90^{\circ}$	B1	
	PRM = MRS same angle	B1	
	AAA oe	B1	Dep on B1B1 and no errors seen
	OR $MPR = SMR$ 3rd angle of triangle		

Question	Answer	Marks	Partial Marks
(b)(i)	5.5	2	M1 for $\frac{x}{4.5} = \frac{9.9}{8.1}$ oe
(b)(ii)	16.7 or 16.73 to 16.74		M1 for $25 \times \left(\frac{8.1}{9.9}\right)^2$ oe or $25 \times \left(\frac{4.5}{their 5.5}\right)^2$ oe

14. 0580_m21_ms_42 Q: 3

	Answer	Mark	Partial Marks
(a)	126 54 117	3	B1 for each
(b)	angle [in a] semicircle is 90	B1	Do not accept triangle for angle
	Allied, co-interior [add to 180] or Angles in triangle [= 180] and alternate oe	B1	
	32	B1	
(c)	109	2	B1 for 218 or 71 in correct places or correctly labelled
	Acei	G	C 3 E

Paper Perfection. Crafted With Passion

15. 0580_s21_ms_41 Q: 11

	Answer	Mark	Partial Marks
(a)	20	2	M1 for $\frac{360}{18}$ or $180 - \frac{16 \times 180}{18}$
(b)	4.5	2	M1 for $\frac{BE}{6.75} = \frac{5.2}{5.2 + 2.6}$ oe
(c)	5.8[0] or 5.798 to 5.799	3	M2 for $2 \times \sqrt[3]{\frac{780}{32}}$ oe or M1 for $\sqrt[3]{\frac{780}{32}}$ or $\sqrt[3]{\frac{32}{780}}$ or $\frac{2^3}{l^3} = \frac{32}{780}$
(d)	QN = NR [given]	B1	
	Two correct pairs of angles with reasons from angle PQN = angle SRN alternate angle QPN = angle RSN alternate angle PNQ = angle PNQ [vertically] opposite	B2	B1 for any correct pair of angles with reason or two correct pairs of angles with no/wrong reasons
	ASA [implies congruent]	B1	dep on B1 B2

16. 0580_p20_ms_40 Q: 9

	Answer	Mark	Partial Marks
(a)	45.[0] or 45.01 to 45.02 nfww Paper Perfection, Crafted	Wit!	M2 for $55^2 + 70^2 - 2 \times 55 \times 70 \cos 40$ or M1 for correct implicit equation A1 for 2026.[]
(b)	84.9 or 84.90 to 84.91	4	B1 for angle $BDC = 40$ soi M2 for $\frac{70 \sin(their 40)}{\sin 32}$ or M1 for correct implicit equation
(c)	4060 or 4063 to 4064 nfww	3	M2 for $\frac{1}{2}$ (55 × 70 sin 40) + $\frac{1}{2}$ (70 × <i>their</i> (b) sin (180 – <i>their</i> 40 – 32)) oe or M1 for correct method for one of the triangle areas
(d)	35.4 or 35.35 nfww	2	M1 for $\sin 40 = \frac{\text{distance}}{55}$ or better or for $= \frac{1}{2}(55 \times 70 \sin 40) = (70 \times \text{distance}) \div 2$ or better

17. 0580_s20_ms_43 Q: 6

	Answer	Mark	Partial Marks
(a)(i)	29.5 or 29.50	4	M2 for $\frac{11^2 + 5.3^2 - 6.9^2}{2 \times 11 \times 5.3}$
			or M1 for $6.9^2 = 11^2 + 5.3^2 - 2 \times 11 \times 5.3 \cos x$
			A1 for 0.87[0] oe

	Answer	Mark	Partial Marks
(a)(ii)	13.4 or 13.38	4	B1FT 84 – their (a)(i) M2 for $\frac{11}{\sin 42} \times \sin their$ 54.5 or M1 for implicit form
(b)	2700	4	M2 for $15 \times 2.5 \times 20 \times 60 \times 60$ or M1 for $15 \times 2.5 \times 20$ M1 for <i>their</i> volume \div 1000 If 0 scored, SC1 for figs 27 with no working

18. 0580_s20_ms_43 Q: 8

	Answer	Mark	Partial Marks
(a)	12	2	M1 for $150 = \frac{(n-2) \times 180}{n}$ or $\frac{360}{180 - 150}$ oe
(b)(i)	45	2	B1 for angles at M or $K = 45$ or angle at $L = 90$
(b)(ii)	85	2	B1 for either angle in alt segment = 58
(b)(iii)	Paper Perfection.	Craft	B1 for either angle at J or H =108 or angle at F =72
(c)	OA = OB = OC = OD Radii	B1	
	AB = CD chords equidistant from centre are equal	B1	
	SSS implies congruent	B1	

19. 0580 w 20 ms 42 Q: 8

	Answer	Mark	Partial Marks
(a)	[v =] 40 [w =] 80 [x =] 40 [y =] 100 [z =] 60	5	B1 for each FT angle z as 140 – their w
(b)	24	3	M2 for $360 - 11x = 2 \times 2x$ oe or M1 for $360 - 11x$ seen or obtuse angle $KOL = 2 \times 2x$ oe
(c)(i)	angle ADX = angle BCX oe same segment oe	M2	Accept in any order M1 for one correct pair with reason
	angle DAX = angle CBX oe same segment oe		If 0 scored, SC1 for two correct pairs of equal angles identified with incorrect/no reasons
	angle $AXD = BXC$ oe [vertically] opposite oe		
	corresponding angles are equal	oe A1	7/
(c)(ii)(a)	8.75 or 8 ³ / ₄	2	M1 for $\frac{8}{10} = \frac{7}{DX}$ oe
(c)(ii)(b)	81.8 or 81.78 to 81.79	4	M2 for $[\cos[BXC] =]\frac{5^2 + 7^2 - 8^2}{2 \times 5 \times 7}$ oe or M1 for $8^2 = 5^2 + 7^2 - 2 \times 5 \times 7 \times \cos()$ oe A1 for $\frac{10}{70}$ oe

20. 0580_w20_ms_43 Q:5er Perfection, Crafted With Passion

	Answer	Mark	Partial Marks
(a)(i)	81° Angle at centre is twice angle at circumference oe	2	B1 for 81°
(a)(ii)	81° Alternate segment [theorem] oe	2	FT their (a)(i) B1FT for 81°

	Answer	Mark	Partial Marks
(a)(iii)	123° Angles on a straight line [= 180] Opposite angles in a cyclic quadrilateral are supplementary oe	3	FT their acute (a)(ii) + 42 B1 for each element
(b)(i)	Angle PTU = angle PRQ corresponding Angle PUT = angle PQR corresponding Angle RPQ is common oe	M2	Accept in any order M1 for one correct pair with reason If 0 scored, SC1 for two correct pairs of equal angles identified with incorrect/no reasons
	Corresponding angles are equal oe	A1	
(b)(ii)(a)	4:7 oe	1	
(b)(ii)(b)	41.25 oe	3	M2 for $20 \times \left(\frac{7}{4}\right)^2$ oe or $20 \times \frac{7^2 - 4^2}{4^2}$ oe
		9/	or M1 for $\left(\frac{7}{4}\right)^2$ or $\left(\frac{4}{7}\right)^2$ or $\frac{7^2 - 4^2}{4^2}$ or $\frac{4^2}{7^2 - 4^2}$

21. 0580_m19_ms_42 Q: 4

	Answer	Mark	Partial Marks
(a)	Correct ruled line with D marked	2	B1 for correct ruled line or short line
(b)	47.5	2	B1 for 9.5 or 95 mm seen or for answer figs 465 to figs 485
(c)	Correct arc radius 7 cm 6 ction, Cra	afted2\	B1 for complete arc other radius, centre <i>A</i> or correct but short arc
	Correct ruled perpendicular bisector of BC with correct pairs of arcs	2	B1 for correct perpendicular bisector without correct arcs or for correct arcs, no/incorrect line
	Correct ruled bisector of angle <i>BCD</i> with correct pairs of arcs	2	B1 for correct angle bisector without correct arcs or for correct arcs, no/incorrect line
	correct region shaded	1	Dep on at least B1B1B1 and five boundaries one of which is an arc
(d)	[1:] 500	1	

22. $0580_{s}19_{ms}_{42}$ Q: 2

	Answer	Mark	Partial Marks
(a)	103	3	M1 for angle ABC or angle $ACB = \frac{1}{2}(180 - 26)$
			oe
			M1 for angle $ABF = 26$ or angle CBD or angle $FBE = 77$ or exterior angle $ACB = 103$ correctly identified or in correct position

	Answer	Mark	Partial Marks
(b)	75	5	
			or 73 at <i>c</i> and 32 at <i>d</i>
			77.0
			or B3 for 58 at <i>m</i>
			or 58 at <i>e</i> and 17 at <i>k</i>
			or B2 for 32 at <i>d</i> and 90 soi at $(c+k)$
			or 32 at d and 17 at k
			or 73 at <i>c</i>
			or B1 for 90 soi at $(c + k)$ or between tangent
			and radius
			or 32 at <i>d</i> or 17 at <i>k</i>
			S
			P
			/d\58\
			$1/\sqrt{17}$
			$m = a/v^{\circ}$
	I AC		\(\begin{align*} \begin{align*} \beg
			l e
	Donor Do	rfootion Crot	
	raperre	rfection, Craf	ted VPith Passion

23. 0580_s19_ms_42 Q: 7

	Answer	Mark	Partial Marks
(a)	$ \begin{array}{r} 180 - \frac{360}{5} \text{ or} \\ $	M2	or M1 for $\frac{360}{5}$ or $(5-2)\times180$ or $90(2\times5-4)$ or $3\times180\div5$ or $6\times90\div5$ or $5\times180-360$
			If 0 scored, SC1 for $\frac{5-2\times180}{5}$
(b)(i)	7.05 or 7.053	3	$M2$ for $12 \times \cos 54$ oe
			or M1 for implicit form or B1 for length of edge of pentagon = 14.1 to 14.11 If 0 scored, SC1 for right angle at M
(b)(ii)(a)	22.8 or 22.81 to 22.83 nfww	3	M2 for $\frac{their (\mathbf{b})(\mathbf{i})}{\cos 72}$ oe or M1 for implicit form oe or B1 for $AX = 36.9$ or 36.93 to 36.94
(b)(ii)(b)	179 or 179.1 to 179.3	3	M2 for $\frac{1}{2} \times 12 \times their \ AX \times \sin 54$ oe or $\frac{1}{2} \times 12 \times their \ OX \times \sin 108$ oe or $\frac{1}{2} \times their \ AX \times their \ OX \times \sin 18$ or $\frac{1}{2} \times 12^2 \times \sin 72 + \text{area } OBX$ oe or $\frac{1}{2} \times 12^2 \times \sin 72 + \text{area } OMB + \text{area } MBX$ oe
	Acel	G	or M1 for a correct method to find area of one relevant triangle AOB, OMB, MBX, OBX or ONX seen

	Answer	Mark	Partial Marks
(a)(i)	$\angle ACD = 46 \text{ soi}$ or $\angle CDE = 44 \text{ soi}$	В2	B1 for angle $ADC = 108$ or angle $DCB = 18$
	58 sin 108 sin their 46	M2	M1 for $\frac{\sin 108}{x} = \frac{\sin their 46}{58}$ oe
	76.68 nfww	A1	
(a)(ii)	10.9 or 10.91 to 10.94	3	B2 for $[AB =]$ 68.9 or 68.91 to 68.94 or M2 for a correct explicit statement for AB or BD or M1 for $\frac{AB}{76.7} = \cos 26$ oe
(b)(i)	10.4 or 10.43 to 10.44	4	M3 for $\sqrt{\frac{70}{\sin 40}}$ oe or M2 for $x^2 \times \sin 40 = 70$ oe or M1 for $\frac{1}{2}x \times 2x \times \sin 40 = 70$
(b)(ii)	140	1	//

Paper Perfection, Crafted With Passion

25. 0580_w19_ms_41 Q: 1

	Answer	Mark	Partial Marks
(a)	[p =] 132 $[q =] 77$	3	B1 for 132 [= p] B2 for 77 [= q] or M1 for 180 – (55 + 48) oe or for <i>their</i> p - 55
(b)	74	3	B2 for $5x - 10 = 360$ or M1 for x + (x + 5) + (2x - 25) + (x + 10) = 360 or for $5x - 10 = k$
(c)	175	3	M2 for $180 - \frac{360}{72}$ or for $\frac{180(72 - 2)}{72}$ or M1 for $\frac{360}{72}$ or for $180(72 - 2)$
(d)	[u =] 30 $[v =] 60$ $[w =] 60$ $[x =] 120$ $[y =] 40$	6	B1 for 30 B1 for 60 B1 for 60 FT <i>their v</i> B1 for 120 FT 2 × <i>their w</i> B2 for 40 or B1 for angle <i>BDC</i> = 20 or angle <i>ADO</i> = 30 or angle <i>ADB</i> = 70
(e)	Acel Paper Perfection,	Grafte	B3 for $360 - 22 = 10x + 3x$ oe or better or for $5x + 1.5x = 180 - 11$ oe or better or M2 for $360 - (3x + 22) = 2 \times 5x$ oe or for $5x + \frac{1}{2}(3x + 22) = 180$ oe or SC2 for $360 + 22 = 10x + 3x$ oe or better or M1 for $180 - 5x$, $10x$ or $360 - (3x + 22)$ correctly placed on the diagram or identified or for angle $A + \text{angle } C = 5x$

	Answer	Mark	Partial Marks
(a)(i)	2a + a + 2b + 3b + 10 = 180 leading to $3a + 5b = 170$ without error or omission	1	
(a)(ii)	8a + 3a + 2b + b + 50 + 4b - 2a = 360 leading to $9a + 7b = 310$ without error or omission	1	
(a)(iii)	Correct method to eliminate one variable	M1	
	[a =]15 [b=]25	A2	A1 for each correct value If 0 scored, SC1 for two values that satisfy one of the equations or for two correct answers with no/incorrect working
(a)(iv)	30	1	
(b)	$-1.5 \text{ or } -1\frac{1}{2} \text{ or } -\frac{3}{2}$	2	M1 for $6x = -12 + 3$ or better
(c)	$\frac{3x+3}{2}$ oe final answer	3	M1 for $8x - 2y = 5x - 3$ or $4x - y = \frac{1}{2}(5x - 3)$ M1FT for isolating the y term correctly
(d)	$9x^6$	2	M1 for $(3x^3)^2$ or $(729x^{18})^{\frac{1}{3}}$ seen or for $9x^k$ or kx^6 as final answer
(e)	$\frac{x}{x-5}$ final answer nfww	3	M1 for $x(x + 5)$ M1 for $(x - 5)(x + 5)$

Paper Perfection. Crafted With Passion

27. 0580_s18_ms_41 Q: 2

	Answer	Mark	Partial Marks
(a)(i)	9	1	
(a)(ii)	ABCD completed accurately with arcs	2	M1 for intersecting arcs radius <i>their</i> 9 cm or for <i>ABCD</i> completed accurately with no arcs
(b)	Correct ruled perpendicular bisector of AB with 2 correct pairs of arcs Correct ruled bisector of angle ABC with 2 correct pairs of arcs Lines intersecting	4	B2 for correct ruled perpendicular bisector of AB with 2 correct pairs of arcs or B1 for correct perpendicular bisector without/wrong arcs and B2 for correct ruled bisector of angle ABC with 2 correct pairs of arcs or B1 for correct bisector of angle ABC without/wrong arcs If lines do not intersect, max B3

28. 0580_s18_ms_41 Q: 8

	Answer	Mark	Partial Marks
(a)	18	3	B2 for 20 nfww or M1 for $8x + x = 180$ or better
(b)	32	3	B1 for angle $DBC = 58$ B1 for angle $BCD = 90$
(c)(i)	24	2	B1 for angle $PRQ = 24$
(c)(ii)	29.4 or 29.40 to 29.41 Paper Perfection, Cra	afted \	M2 for ${360} \times 2 \times \pi \times 5.4$

	Answer	Mark	Partial Marks
(a)(i)(a)	62 and Isosceles [triangle] and Angle at centre is twice angle at circumference oe	3	B2 for 62 and one correct reason or B1 for 62 with no/wrong reason or for angle $EOD = 124$ soi or for no/wrong angle with correct reason
(a)(i)(b)	62 and [Angles in] same segment oe or angle at centre is twice angle at circumference oe	2	2FT their (a)(i)(a) and correct reason B1FT for their (a)(i)(a) with no/wrong reason or for no/wrong angle with correct reason
(a)(ii)	8	3	M2 for $(180-109) - 28 - 35$ oe or M1 for [angle $AED = 180 - 109$ oe
(b)(i)	24	3	x = ext angle B2 for $[x =]$ 15 isw or M1 for $x + 11x = 180$ oe or for $\frac{180(n-2)}{[n]} = \frac{360}{[n]} \times 11$
(b)(ii)	3960	2	FT (their 24 – 2) × 180 dep on (b)(i) an integer and > 6 M1 for (their 24 – 2) × 180 oe or their 24 × 11 × their 15 oe or 11 × 360

AcelGCSE

Paper Perfection. Crafted With Passion

30. 0580_w18_ms_41 Q: 1

	Answer	Mark	Partial Marks
(a)(i)	2.25 final answer	2	M1 for $\frac{3}{5+3}$ or $\frac{6}{5+3}$ oe
(a)(ii)	37.5	1	FT their $\frac{(\mathbf{a})(\mathbf{i})}{6} \times 100$
(a)(iii)	5.5[0] or 5.499 to 5.500	2	M1 for 6 ÷ 1.091
(b)	21	3	M2 for $15 \times \sqrt{\frac{352.8}{15 \times 12}}$ oe or SC2 for answer 16.8 or M1 for $\sqrt{\frac{352.8}{15 \times 12}}$ or $\sqrt{\frac{15 \times 12}{352.8}}$ seen or M1 for a correct implicit statement for the length
(c)	525	3	M2 for $\frac{483}{100-8}$ [×100] oe or M1 for 483 associated with 92 [%]

31. 0580_w18_ms_42 Q: 7

		Answer	Mark	Partial Marks
(a)	29		1	
(b)	128	cal	2	FT $180 - 2$ (55 – their (a)) M1 for angle OCA or angle $OAC = 55 - their$ (a) soi

	Answer	Mark	Partial Marks
(c)	64 Perfection, C	1 1	FT their (b) ÷ 2
(d)	116	1	FT 180 – their (c)

32. 0580 w 18 ms 43 Q: 6

	Answer	Mark	Partial Marks
(a)	52[.0] or 52.02	4	M2 for [cos =] $\frac{13^2 + 4^2 - 11^2}{2 \times 13 \times 4}$ or M1 for $11^2 = 13^2 + 4^2 - 2 \times 13 \times 4 \cos()$ A1 for [cos ⁻¹ =] $\frac{64}{104}$ oe or 0.615 or 0.6153 to 0.6154
(b)	62.7 or 62.69 to 62.70	4	M3 for $180 - \sin^{-1}\left(\frac{8\sin 80}{13}\right) - 80$ oe or M2 for $\sin A = \frac{8\sin 80}{13}$ or M1 for $\frac{13}{\sin 80} = \frac{8}{\sin A}$ oe A1 for 37.3 or 37.30 If 0 scored, M1 for $180 - 80 - their A$
(c)	66.7 or 66.68 to 66.71	3	M1 for $0.5 \times 13 \times 4 \times \sin(theirACB)$ oe M1 for $0.5 \times 8 \times 13 \times \sin(theirACD)$ oe

AcelGCSE

Paper Perfection, Crafted With Passion

33. 0580 w 18 ms 43 Q: 8

	Answer	Mark	Partial Marks
(a)(i)	4	2	M1 for correct method using similar triangles e.g. $\frac{10}{5} = \frac{8}{DX}$ oe
(a)(ii)	36.9 or 36.86 to 36.87	2	M1 for $\tan = \frac{6}{8}$ or $\sin = \frac{6}{10}$ or $\cos = \frac{8}{10}$ oe
(b)	[v =] 150	B1	
	[w=] 15	B2	FT $(180 - their v) \div 2$ M1 for $180 - 2w = their v$ oe or angle $POQ = 180 - their v$ oe
	[x=] 15	B1	FT their w
	[y =] 10	B2	M1 for angle $TPS = 5^{\circ}$ or angle $TXS = 20^{\circ}$ or $OXP = 20^{\circ}$ or $TXP = 160^{\circ}$ (where X is where OT and PS intersect)
(c)	182 or 182.4	3	M2 for $\left(\frac{94}{226}\right)^{\frac{3}{2}} \left[= \frac{V}{680} \right]$ oe or M1 for ratio of lengths $= \sqrt{\frac{226}{94}}$ or $\sqrt{\frac{94}{226}}$ or better or for $\frac{V^2}{680^2} = \frac{94^3}{226^3}$ oe

34. 0580_m17_ms_42 Q: 6

	ANSWER	MARK	PARTIAL MARKS
(a) (i)	27	1	
	Paper Perfection, C	Crafted With	Passion
(ii)	3.89 or 3.888 to 3.889	2 M1	for $\frac{7}{EZ} = \frac{9}{5}$ oe
(b)	76 cao	-	for $ABC = 104$ or $AOC = 152$ or $DD = 28$
			OBA = 52 and OBC = 52 BCD = 128 and OCB = 52
		or I	B1 for any one of OBA,OBC , CB = 52 or $BCD = 128$

	ANSWER	MARK	PARTIAL MARKS
(c) (i)	90	1	
	angle in semicircle	1	
(ii)	27	1	
	tangent [perpendicular to] radius	1	
(iii)	rectangle	1	

35. $0580 \text{_m} 17 \text{_ms} \text{_42} \quad Q: 8$

	ANSWER	MARK	PARTIAL MARKS
(a) (i)	5.14 or 5.135 to 5.142 nfww	4	M2 for
			$[XY^2 =] 12.5^2 + 9.9^2 - 2 \times 12.5 \times 9.9 \times$
			cos 23
			or M1 for implicit version
			A1 for 26.4 to 26.5
			OR
			B1 for $[XYT =]$ 108 or $[TXY =]$ 49
		97	M2 for $\frac{12.5 \sin 23}{\sin(180 - 72)}$ oe
			or M1 for $\frac{\sin(180 - 72)}{12.5} = \frac{\sin 23}{XY}$ oe

	ANSWER	MARK	PARTIAL MARKS
(ii)	15.6 or 15.7 or 15.64 to 15.68	3	M2 for $[TZ=]\frac{9.9}{\sin 37} \times \sin(72)$ oe or M1 for $\frac{9.9}{\sin 37} = \frac{TZ}{\sin 72}$ oe
	Acel G	Cafted W	OR M2 for $\frac{12.5 \times \sin(180 - 23 - 108)}{\sin 37}$ oe or M1 for $\frac{\sin 37}{12.5} = \frac{\sin(180 - 23 - 108)}{TZ}$ oe
(b)	3.79 or 3.793 to 3.794		M3 for $r = 20.5 \div \left(2 + \frac{3 \times 65 \times 2\pi}{360}\right)$ oe
			or M2 for $20.5 = 2r + \frac{3 \times 65}{360} \times 2\pi r$ oe or M1 for $[3 \times] \frac{65}{360} \times 2\pi r$ oe or $20.5 = 2r + \text{expression involving } \pi$

36. 0580_s17_ms_43 Q: 2

	ANSWER	MARK	PARTIAL MARKS
(a)	38	1	
	118	1	
	62	1FT	FT 180 – their y
(b)	69	3	B2 for $ACB = 42$ or B1 for $ADB = 42$ If zero scored, SC1 for $ACB = their ADB$
(c)	107	2	B1 for <i>QPS</i> = 73 or [reflex] <i>QOS</i> = 214

37. 0580_w17_ms_41 Q: 2

	ANSWER	MARK	PARTIAL MARKS
(a)	Acel Paper Perfection, C	Grafte	B3 for 238 or 61 or 58 correctly identified in working or on diagram or B2 for 952 seen or 74 or 119 or 29 correctly identified in working or on diagram OR Method 1 using sum of interior angles M1 for $(8-2) \times 180$ or 1080 isw M1 for $360 - 4 \times 32$ M2 for $360 - 4 \times 3$
(b)	105	3	M2 for $360 = 2 \times y + (2y - 60)$ oe or $2(180 - y) = 2y - 60$ oe
			or B1 identifying in working or on diagram a relevant angle in terms of <i>y</i>