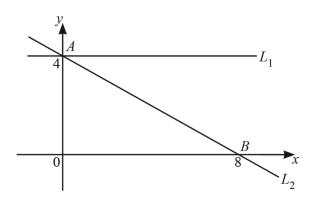
Chapter 3


Coordinate geometry

01. 0580_ (a) A is	$s24_qp_42$ Q: 10 the point $(6, 2)$ and B is the point $(3, -4)$.
(i)	Find the coordinates of the midpoint of AB .
(ii)	(,
(b) The	e equation of line l is $4x+3y-12=0$.
(i)	Find the gradient of l .
(ii)	
	Paper Perfection, Crafted With Passion () [2]
(iii)	Line p is perpendicular to l and passes through $(6, 5)$.
	Find the equation of p in the form $y = mx + c$.

y = [3]

02. $0580 _{\mathrm{m}23} _{\mathrm{qp}} _{42}$ Q: 6

NOT TO SCALE

A is the point (0, 4) and B is the point (8, 0).

The line L_1 is parallel to the x-axis.

The line L_2^1 passes through A and B.

(a) Write down the equation of L_1 .

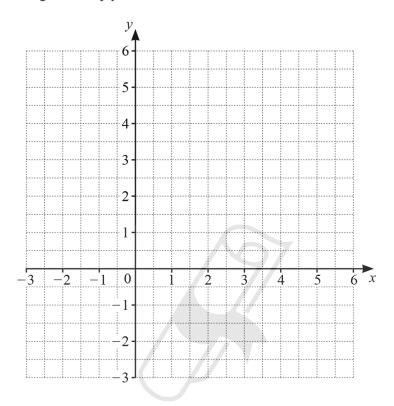
......[1]

(b) Find the equation of L_2 . Give your answer in the form y = mx + c.

AcelGGSE [2]

- (c) C is the point (2,3). er Perfection, Crafted With Passion The line L_3 passes through C and is perpendicular to L_2 .
 - (i) Show that the equation of L_3 is y = 2x 1.

(ii) L_3 crosses the x-axis at D. Find the length of CD.


AcelGCSE

Paper Perfection. Crafted With Passion

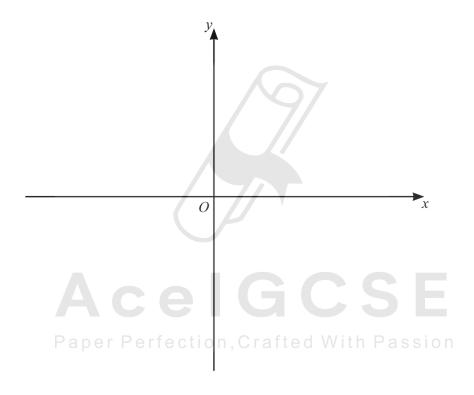
03. $0580 _{s}23 _{q} _{p}_{41}$ Q: 6

(a) In the square ABCD, A has coordinates (-2, 1) and B has coordinates (1, 5). C has coordinates (a, b), where a and b are both positive integers.

Find the coordinates of C and the coordinates of D. You may use the grid to help you.

AcelGCSE

Paper Perfection, Crafted With Passion $C(\dots, \dots, \dots)$


(b)	P h	as coordinates $(-1, 3)$ and Q has coordinates $(6, 4)$.	
	(i)	Find the coordinates of the midpoint of PQ .	
((ii)	([2]
(i	iii)	Find the gradient of PQ .	[3]
(i	iv)	Find the equation of the line parallel to PQ that crosses the x -axis at $x=2$.	[2]
		AcelGCSE Paper Perfection, Crafted With Passion	
			[3]

04. $0580 _{s}23 _{q} _{p} _{4}2$ Q: 8

(a) (i) Show that the equation y = (x-4)(x+1)(x-2) can be written as $y = x^3 - 5x^2 + 2x + 8$.

[2]

(ii) On the diagram, sketch the graph of $y = x^3 - 5x^2 + 2x + 8$, indicating the values where the graph crosses the axes.

[4]

(b) The graph of $y = x^3 - 5x^2 + 2x + 8$ has two tangents with a gradient of 10.

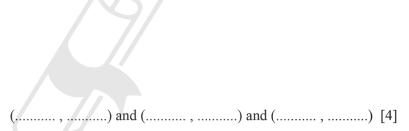
Find the equations of these two tangents.

You must show all your working and give your answers in the form y = mx + c.

<i>v</i> =	
<i>v</i> =	 [7]

	$580_s23_qp_43$ Q: 11 as coordinates (4, 1) and N has coordinates (-2, -7).
(a)	Find the length of MN.
	[3]
(b)	Find the gradient of MN.
(c)	Find the equation of the perpendicular bisector of MN.

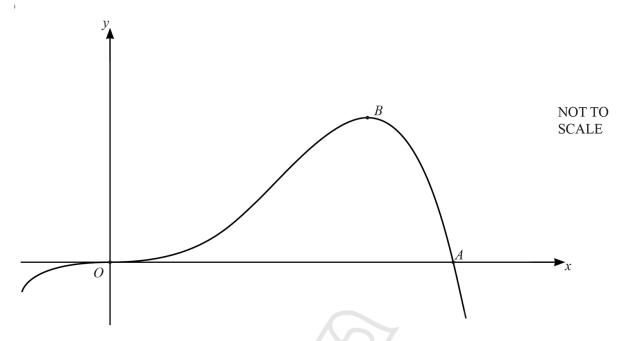
.....[4]


 $06.\ 0580_s23_qp_43 \quad Q{:}\ 12$

The equation of a curve is $y = x^4 - 8x^2 + 5$.

(a) Find the derivative, $\left(\frac{dy}{dx}\right)$, of $y = x^4 - 8x^2 + 5$.

(b) Find the coordinates of the three turning points. You must show all your working.


(c) Determine which one of these turning points is a maximum. Justify your answer.

Paper Perfection, Crafted With Passion

[2]

07. 0580_w23_qp_42 Q: 9

The diagram shows a sketch of the graph of $y = 4x^3 - x^4$. The graph crosses the x-axis at the origin O and at the point A. The point B is a maximum point.

(a) Differentiate $4x^3 - x^4$.

.....[2]

(b) Find the coordinates of *B*.

Paper Perfection, Crafted With Passion

(.....) [3]

(c) Find the gradient of the graph at the point A.

.....[3]

 $08.0580 w23 qp_43 Q: 9$

A is the point (0, 2), B is the point (3, 3) and C is the point (4, 0).

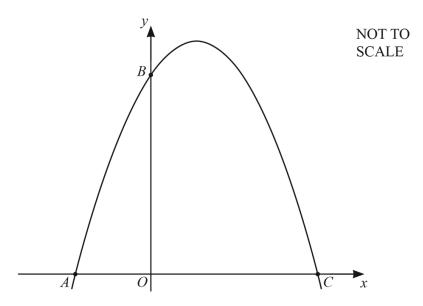
(a) Determine if triangle *ABC* is scalene, isosceles or equilateral. You must show all your working.

[4]

(b) (i) Find the equation of the line AC. Give your answer in the form y = mx + c.

(ii) Find the equation of the perpendicular bisector of AC. Give your answer in the form y = mx + c.

 $y = \dots$ [4]


(iii) ABCD is a kite. The point D has coordinates (w, 4w+1).

Find the coordinates of D.

(.....) [3]

09. 0580_w23_qp_43 Q: 11

The diagram shows a sketch of $y = 18 + 5x - 2x^2$.

(a) Find the coordinates of the points A, B and C.

		A (, ,)
		B (,)
		C(,) [4]

(b) Differentiate $18 + 5x - 2x_e^2$ reflection, Crafted With Passion

.....[2]

(c) Find the coordinates of the point on $y = 18 + 5x - 2x^2$ where the gradient is 17.

(.....) [3]

10. 0580_s22_qp_42_Q; 3
A line, *l*, joins point *F* (3, 2) and point *G* (-5, 4).

(a) Calculate the length of line *l*.

[3]

(b) Find the equation of the perpendicular bisector of line *l* in the form y = mx + c.

[5]

(c) A point *H* lies on the *y*-axis such that the distance GH = 13 units.

Find the coordinates of the two possible positions of *H*.

AcelGCSE

Paper Perfecti (n...Crafted.Wi) and (assion,) [4]

 $11.\ 0580_s22_qp_43 \quad Q: 8$

- (a) A has coordinates (-2,7), B has coordinates (1,-5) and C has coordinates (5,4).
 - (i) Find the coordinates of the midpoint of the line AB.

(.....) [2]

(ii) Find \overrightarrow{AC} .

$$\overrightarrow{AC} = \left(\right)$$
 [2]

(iii) Find $|\overrightarrow{AC}|$.

.....[2]

(iv) Find the equation of the line AB. Give your answer in the form y = mx + c.

AcelGCSE

Paper Perfection, Crafted With Passion

(v) Find the equation of the line perpendicular to AB that passes through C. Give your answer in the form y = mx + c.

$$y =$$
 [3]

(b) The graphs of y + 5x = 8 and $y = 2x^2 + 6x - 13$ intersect at the points P and Q.

Find the coordinates of \mathcal{Q} . Show all your working.

AcelGCSE

Paper Perfection, Crafted With Passion

Q(.....) [6]

12. 0	$580_{2} - 22_{2} = 42$ Q: 8
AB : A is	is a line with midpoint M . the point $(2, 3)$ and M is the point $(12, 7)$.
(a)	Find the coordinates of B .
	(, ,, [2]
(b)	Show that the equation of the perpendicular bisector of AB is $2y + 5x = 74$.
	[4]
(c)	The perpendicular bisector of AB passes through the point N .
	The point N has coordinates $(2, n)$.
	Find the value of n .
(1)	$n = \dots$ [1] Points A , M and N form a triangle.
(u)	Find the area of the triangle.
	That the area of the triangle.
	Paner Perfection Crafted With Passion

Paper Perfection, Crafted With Passion

. [2]

- 13. 0580_m21_qp_42 Q: 12
- (a) Find the gradient of the curve $y = 2x^3 7x + 4$ when x = -2.

- **(b)** A is the point (7, 2) and B is the point (-5, 8).
 - (i) Calculate the length of AB.

(ii) Find the equation of the line that is perpendicular to AB and that passes through the point (-1, 3).

Give your answer in the form y = mx + c.

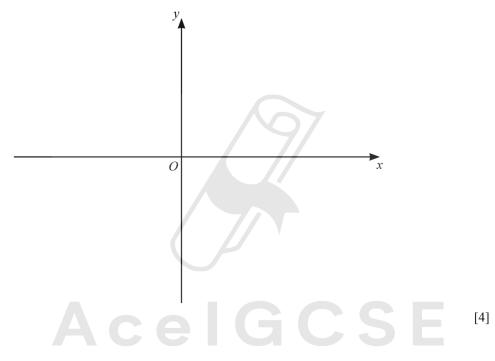
$$y = \dots$$
 [4]

- (iii) AB is one side of the parallelogram ABCD and
 - $\overrightarrow{BC} = \begin{pmatrix} -a \\ -b \end{pmatrix}$ where a > 0 and b > 0
 - the gradient of BC is 1
 - $|\overrightarrow{BC}| = \sqrt{8}$.

Find the coordinates of D.

AcelGCSE

Paper Perfection, Crafted With Passion


14. 0580_s21_qp_42 Q: 9

(a) (i) The equation $y = x^3 - 4x^2 + 4x$ can be written as $y = x(x-a)^2$.

Find the value of a.

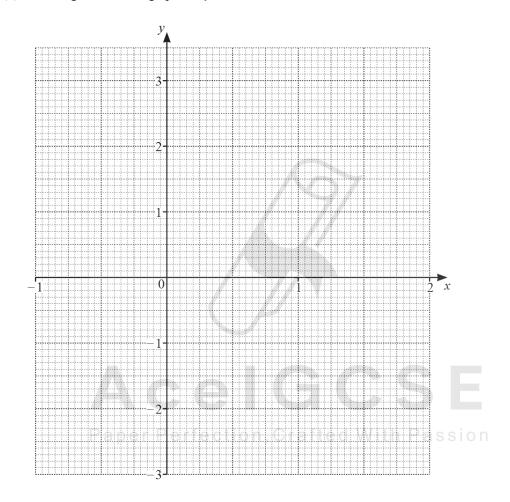
$$a =$$
 [2]

(ii) On the axes, sketch the graph of $y = x^3 - 4x^2 + 4x$, indicating the values where the graph meets the axes.

Paper Perfection, Crafted With Passion

(b) Find the equation of the tangent to the graph of $y = x^3 - 4x^2 + 4x$ at x = 4. Give your answer in the form y = mx + c.

AcelGCSE


Paper Perfection, Crafted With Passion

15. $0580 \text{_m} 20 \text{_qp} \text{_42}$ Q: 2

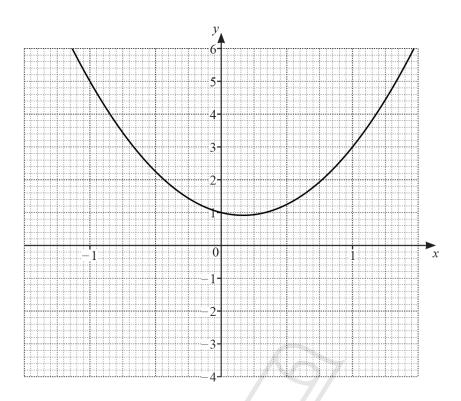
(a) The table shows some values for $y = 2x^3 - 4x^2 + 3$.

x	-1	-0.5	0	0.5	1	1.5	2
У	-3	1.75				0.75	3

- (i) Complete the table. [3]
- (ii) On the grid, draw the graph of $y = 2x^3 4x^2 + 3$ for $-1 \le x \le 2$.

[4]

(iii) Use your graph to solve the equation $2x^3 - 4x^2 + 3 = 1.5$.


 $x = \dots$ or $x = \dots$ [3]

(iv) The equation $2x^3 - 4x^2 + 3 = k$ has only one solution for $-1 \le x \le 2$.

Write down a possible integer value of k.

.....[1]

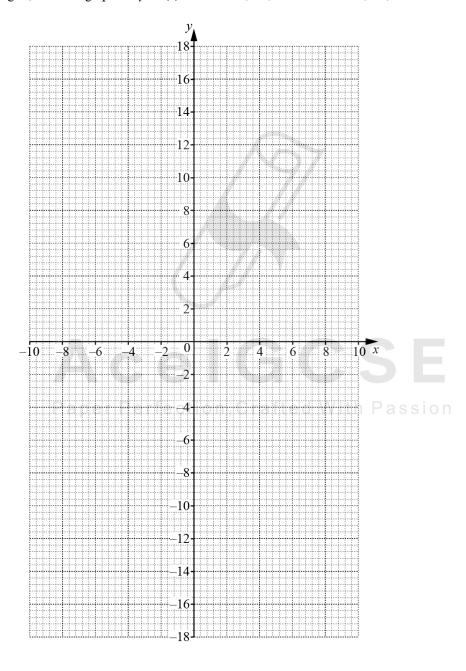
(b)

- (i) On the grid, draw the tangent to the curve at x = 1.
- (ii) Use your tangent to estimate the gradient of the curve at x = 1.
 -[2]

[1]

(iii) Write down the equation of your tangent in the form y = mx + c.

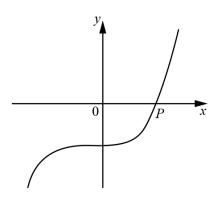
Panor Portoction Crafted With Passion


 $y = \dots$ [2]

$$f(x) = \frac{20}{x} + x, x \neq 0$$

(a) Complete the table.

					-1.6				10
f(x)	-12	-10.5	-9	-12	-14.1	14.1	12		12
									[2]


(b) On the grid, draw the graph of y = f(x) for $-10 \le x \le -1.6$ and $1.6 \le x \le 10$.

[5]

(c)	Usi	ng your graph, solve the equation $f(x) = 11$.	
		$x = \dots \text{ or } x = \dots$	[2]
(d)	k is	a prime number and $f(x) = k$ has no solutions.	
	Fine	d the possible values of k .	
			[2]
(e)	The	e gradient of the graph of $y = f(x)$ at the point (2, 12) is -4 .	
	Wri	ite down the coordinates of the other point on the graph of $y = f(x)$ where the gradient is -4 .	
		(, ,	[1]
(f)	(i)	The equation $f(x) = x^2$ can be written as $x^3 + px^2 + q = 0$.	
		Show that $p = -1$ and $q = -20$.	
		Paper Perfection, Crafted With Passion	
			[2]
	(ii)	On the grid opposite, draw the graph of $y = x^2$ for $-4 \le x \le 4$.	[2]
	(iii)	Using your graphs, solve the equation $x^3 - x^2 - 20 = 0$.	
,	(111)		F13
		<i>x</i> =	[1]

(iv)

NOT TO SCALE

The diagram shows a **sketch** of the graph of $y = x^3 - x^2 - 20$. *P* is the point (n, 0).

Write down the value of n.

 $n = \dots [1]$

AcelGCSE

Paper Perfection, Crafted With Passion

 $17.\ 0580_s20_qp_41 \quad Q: 10$

- (a) A rhombus ABCD has a diagonal AC where A is the point (-3, 10) and C is the point (4, -4).
 - (i) Calculate the length AC.

.....[3]

(ii) Show that the equation of the line AC is y = -2x + 4.

[2]

(iii) Find the equation of the line BD.

AcelGCSE

Paper Perfection, Crafted With Passion

.....[4]

- **(b)** A curve has the equation $y = x^3 + 8x^2 + 5x$.
 - (i) Work out the coordinates of the two turning points.

(ii) Determine whether each of the turning points is a maximum or a minimum. Give reasons for your answers.

AcelGCSE

Paper Perfection, Crafted With Passion

[3]

 $18.0580 _{s}20 _{q} _{p} _{4}2 Q: 9$

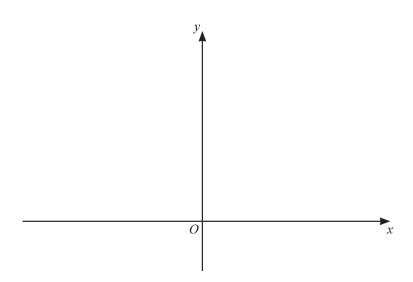
(a) (i) Write $x^2 + 8x - 9$ in the form $(x+k)^2 + h$.

.....[2]

(ii) Use your answer to part (a)(i) to solve the equation $x^2 + 8x - 9 = 0$.

x = or x = [2]

(b) The solutions of the equation $x^2 + bx + c = 0$ are $\frac{-7 + \sqrt{61}}{2}$ and $\frac{-7 - \sqrt{61}}{2}$. Find the value of b and the value of c.


AcelGCSE

Paper Perfection, Crafted With Passion

b =

 $c = \dots$ [3]

(c) (i)

On the diagram,

- (a) sketch the graph of $y = (x-1)^2$, [2]
- **(b)** sketch the graph of $y = \frac{1}{2}x + 1$. [2]
- (ii) The graphs of $y = (x-1)^2$ and $y = \frac{1}{2}x + 1$ intersect at A and B. Find the length of AB.

AcelGCSE

Paper Perfection, Crafted With Passion

$$AB = \dots$$
 [7]

19. 0580_s20_qp_43 Q: 9

- (a) The equation of line L is 3x 8y + 20 = 0.
 - (i) Find the gradient of line L.

.....[2]

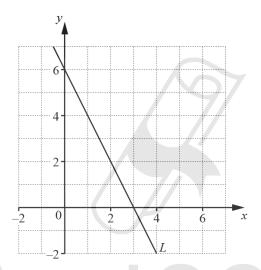
(ii) Find the coordinates of the point where line L cuts the y-axis.

AcelGCSE

Paper Perfection. Crafted With Passion

The coordinates of P are $(-3, 8)$ and the coordinates of Q are $(9, -2)$.	
(i) Calculate the length PQ .	
	[3]
(ii) Find the equation of the line parallel to PQ that passes through the point $(6, -1)$.	
	[3]
(iii) Find the equation of the perpendicular bisector of PQ.	
Paper Perfection, Crafted With Passion	
	[4]

 $20.\ 0580_s19_qp_42 \quad Q:4$


- (a) The equation of a straight line is 2y = 3x + 4.
 - (i) Find the gradient of this line.

.....[1]

(ii) Find the co-ordinates of the point where the line crosses the y-axis.

(.....) [1]

(b) The diagram shows a straight line L.

(i) Find the equation of line L.

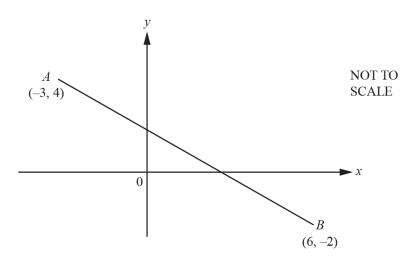
Paper Perfection, Crafted With Passion

(ii) Find the equation of the line perpendicular to line L that passes through (9, 3).

.....[3]

- (c) A is the point (8, 5) and B is the point (-4, 1).
 - (i) Calculate the length of AB.

.....[3]


(ii) Find the co-ordinates of the midpoint of AB.

 $(\hspace{.05cm}.....,\hspace{.05cm}.....)\hspace{.1cm}[2]$

	$0580_s19_qp_43$ Q: 7 traight line joins the points A (-2, -3) and C (1, 9).	
(a)	Find the equation of the line AC in the form $y = mx + c$.	
(b)	y =	3]
		2]
(c)	ABCD is a kite, where AC is the longer diagonal of the kite. B is the point $(3.5, 2)$.	
	(i) Find the equation of the line BD in the form $y = mx + c$.	
	AcelGCSE Paper Perfection, Crafted With Passion	
	y =[3	21
	(ii) The diagonals AC and BD intersect at $(-0.5, 3)$. Work out the co-ordinates of D .	,1
	(, ,) [2	2]

 $22.\ 0580_m18_qp_42 \quad Q{:}\ 10$

Calculate the length of AB.

(b) The point P has co-ordinates (10,12) and the point Q has co-ordinates (2,-4).

Find

(i) the co-ordinates of the mid-point of the line PQ,

Paper Perfection, Crafted (Vith Passion)[2]

(ii) the gradient of the line PQ,

.....[2]

(iii) the equation of a line perpendicular to PQ that passes through the point (2, 3).

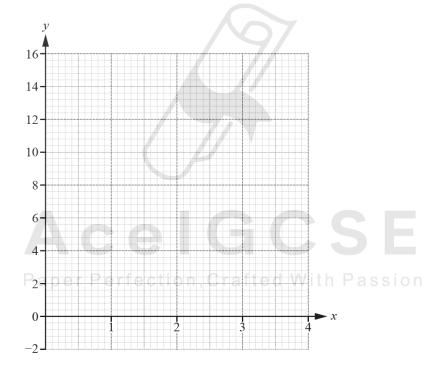
 $23.\ 0580_s18_qp_43 \quad Q \colon 2$

(a) (i)
$$y = 2^x$$

Complete the table.

x	0	1	2	3	4
v		2	4	8	

[2]


(ii)
$$y = 14 - x^2$$

Complete the table.

x	0	1	2	3	4
У		13	10	5	

[2]

(b) On the grid, draw the graphs of $y = 2^x$ and $y = 14 - x^2$ for $0 \le x \le 4$.

[6]

- (c) Use your graphs to solve the equations.
 - (i) $2^x = 12$

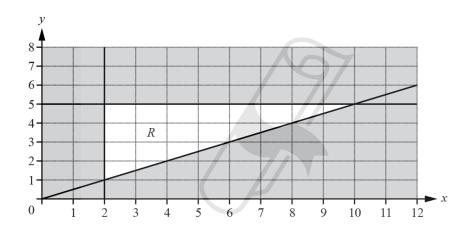
$$x =$$
 [1]

(ii) $2^x = 14 - x^2$

$$x =$$
.....[1]

- (d) (i) On the grid, draw the line from the point (4, 2) that has a gradient of -4. [1]
 - (ii) Complete the statement.

This straight line is a to the graph of
$$y = 14-x^2$$
 at the point (.......).



24. 0580_s18_qp_43 Q: 9

(a) Find the equation of the straight line that is perpendicular to the line $y = \frac{1}{2}x + 1$ and passes through the point (1, 3).

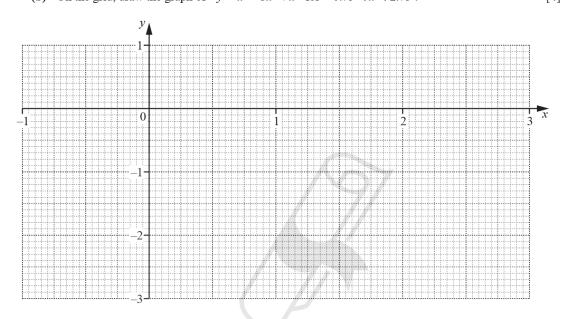
.....[3]

(b)

(i) Find the three inequalities that define the region R.

Paper Perfection, Crafted With Passion

(ii) Find the point (x, y), with integer co-ordinates, inside the region R such that 3x + 5y = 35.


40

$25.\ 0580_w18_qp_41 \quad Q: 3$

The table shows some values of $y = x^3 - 3x^2 + x$.

x	-0.75	-0.5	-0.25	0	0.5	1	1.5	2	2.5	2.75
У	-2.9	-1.4	-0.5	_	-0.1	-1	-1.9		-0.6	

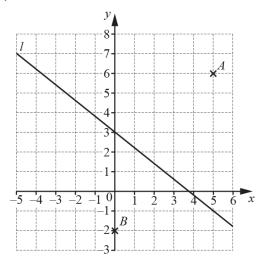
(b) On the grid, draw the graph of
$$y = x^3 - 3x^2 + x$$
 for $-0.75 \le x \le 2.75$.

(c) Use your graph to complete the inequalities in x for which y > -1.

(d)	The equation x^3	$3 - 3x^2 + 2x - 1 =$	0 can be solved	by drawing a	straight line or	the grid.
-----	--------------------	-----------------------	-----------------	--------------	------------------	-----------

(i) Write down the equation of this line.

(ii) On the grid, draw this line and use it to solve the equation $x^3 - 3x^2 + 2x - 1 = 0$.


$$x =$$
 [3]

(e) By drawing a suitable tangent, find an estimate for the gradient of the graph of $y = x^3 - 3x^2 + x$ at x = -0.25.

.....[3]

AcelGCSE

 $26.\ 0580_w18_qp_41 \quad Q{:}\ 8$

(a) Write down the co-ordinates of A.

(b) Find the equation of line *l* in the form y = mx + c.

(c) Write down the equation of the line parallel to line l that passes through the point B.

.....[2]

- (d) C is the point (8, 14).
 - (i) Write down the equation of the line perpendicular to line l that passes through the point C.

AcelGCSE

Paper Perfection, Crafted With Passion

.....[3]

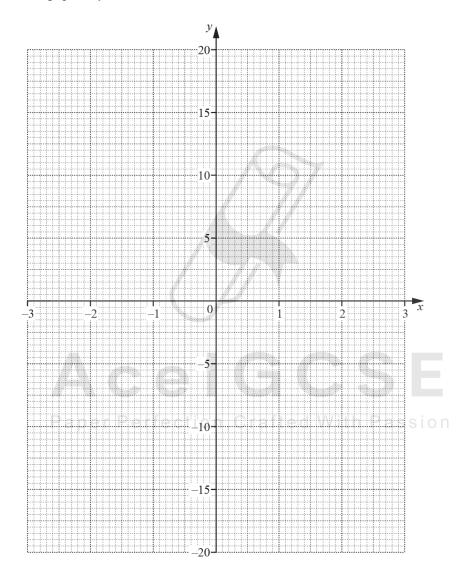
(ii) Calculate the length of AC.

.....[3]

(iii) Find the co-ordinates of the mid-point of BC.

(....., ,) [2]

27. 0580_w18_qp_42 Q: 5


The table shows some values of $y = x^3 - 3x - 1$.

x	-3	-2.5	-2	-1.5	-1	0	1	1.5	2	2.5	3
y	-19	-9.1		0.1	1	-1	-3	-2.1	1	7.1	

(a) Complete the table of values.

[2]

(b) Draw the graph of $y = x^3 - 3x - 1$ for $-3 \le x \le 3$.

[4]

- (c) A straight line through (0, -17) is a tangent to the graph of $y = x^3 3x 1$.
 - (i) On the grid, draw this tangent.

[1]

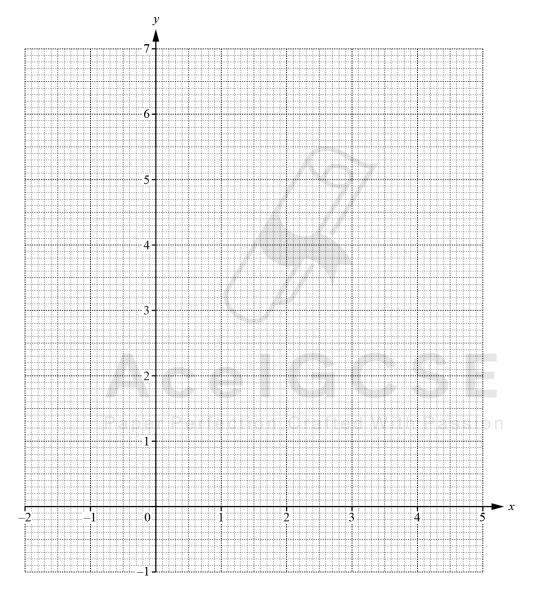
(ii) Find the co-ordinates of the point where the tangent meets your graph.

(iii) Find the equation of the tangent. Give your answer in the form y = mx + c.

y =[3]

(d) By drawing a suitable straight line on the grid, solve the equation $x^3 - 6x - 3 = 0$.

 $x = \dots \text{ or } x = \dots \text{ or } x = \dots$ [4]


 $28.\ 0580_m17_qp_42 \quad Q: 3$

The table shows some values for $y = 1.5^x - 1$.

x	-2	-1	0	1	2	3	4	5
y	-0.56	-0.33				2.38	4.06	6.59

(a) Complete the table. [3]

(b) Draw the graph of $y = 1.5^x - 1$ for $-2 \le x \le 5$.

[4]

(c) Use your graph to solve the equation $1.5^x - 1 = 3.5$.

(d) By drawing a suitable straight line, solve the equation $1.5^x - x - 2 = 0$.

$$x =$$
......or $x =$[3]

- (e) (i) On the grid, plot the point A at (5, 5).
 - (ii) Draw the tangent to the graph of $y = 1.5^x 1$ that passes through the point A. [1]
 - (iii) Work out the gradient of this tangent.

[1]

AcelGCSE

29. ($0.580 \ s17 \ qp \ 41 \ Q:7$
A li	ne joins the points $A(-3, 8)$ and $B(2, -2)$.
(a)	Find the co-ordinates of the midpoint of AB .
(b)	(,
(c)	$y = \dots [3]$ Another line is parallel to AB and passes through the point $(0, 7)$. Write down the equation of this line.
(d)	Find the equation of the line perpendicular to AB which passes through the point (1, 5). Give your answer in the form $ax + by + c = 0$ where a , b and c are integers. Paper Perfection, Crafted With Passion
	[4]

	9580 w 17 qp = 43 Q: 8 e A has equation $y = 5x - 4$.	
	e B has equation $3x + 2y = 18$.	
(a)	Find the gradient of	
	(i) line A ,	
		[1]
	(ii) line B .	
		[1]
<i>a</i> >		[1]
(b)	Write down the co-ordinates of the point where line A crosses the	x-axis.
		()[2]
(c)	Find the equation of the line perpendicular to line A which passes Give your answer in the form $y = mx + c$.	through the point (10, 9).
		=[4]
(d)	Work out the co-ordinates of the point of intersection of line A an	d line B.
	Paper Perfection, Crafte	d With Passion
		()[3]
(e)	Work out the area enclosed by line A , line B and the y -axis.	
		[3]

01. $0580_s24_ms_42$ Q: 10

Question	Answer	Marks	Partial Marks
(a)(i)	(4.5, -1)	2	B1 for each

Question	Answer	Marks	Partial Marks
(a)(ii)	6.71 or 6.708	3	M2 for $(6-3)^2 + (2-4)^2$ oe or better or M1 for $[-](6-3)$ and $[-](2-4)$ oe or for $([-]3)^2$ and $([-]6)^2$ oe
(b)(i)	$-\frac{4}{3}$	2	M1 for $3y = -4x + 12$ or $\frac{4}{3}x + y - \frac{12}{3}$ [= 0] or better seen
(b)(ii)	(0, 4)	2	B1 for each or for $y = 4$ not in coordinate form
(b)(iii)	$[y=]\frac{3}{4}x + \frac{1}{2}$ final answer	3	M1 for gradient $\frac{3}{4}$ or $\frac{-1}{their(\mathbf{b})(\mathbf{i})}$ oe or better M1 for (6, 5) substituted into $y = \frac{3}{4}x + c$ or $y = their mx + c$ oe

AcelGCSE

02. $0580 \text{_m} 23 \text{_ms} 42$ Q: 6

Question	Answer	Marks	Partial Marks
(a)	<i>y</i> = 4 oe	1	
(b)	$[y =] -\frac{1}{2}x + 4 \text{final answer}$	2	B1 for grad = $-\frac{4}{8}$ oe soi or $[y=]kx+4$
(c)(i)	Gradient = $\frac{-1}{their \text{ gradient in}(b)}$	M1	Accept e.g. $2 \times -\frac{1}{2} = -1$ oe or states negative reciprocal of $-\frac{1}{2} = 2$
	Substituting (2, 3) in <i>their</i> equation.	M1	$3 = 2 \times their \ m + c$
	leading to $y = 2x - 1$	A1	No errors or omissions
(c)(ii)	3.35 or 3.354	5	B2 for $\left(\frac{1}{2}, 0\right)$ soi or x-coordinate of $D = \frac{1}{2}$ or M1 for $2x - 1 = 0$ M2 for $\left(2 - their \frac{1}{2}\right)^2 + \left(3 - their 0\right)^2$ oe or M1 for $\left(2 - their \frac{1}{2}\right)$ and $\left(3 - their 0\right)$ oe

AcelGCSE

03. $0580 _{s}23 _{ms}_{41}$ Q: 6

Question	Answer	Marks	Partial Marks
(a)	(5, 2) (2, -2)	4	B3 for 3 correct values or answers for <i>C</i> and <i>D</i> reversed or correct coordinates given on diagram wrongly labelled or B2 for one correct coordinate pair correctly labelled or M2 for <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> correctly plotted or M1 for <i>A</i> and <i>B</i> correctly plotted If 0 or 1 scored instead award SC2 for answers (-3, 8) and (-6, 4) or answers (1.5,1.5) and (-2.5, 4.5)
(b)(i)	(2.5, 3.5) oe	2	B1 for each
(b)(ii)	7.07 or 7.071	3	M2 for $(6-1)^2 + (4-3)^2$ oe or M1 for $(6-1)$ or $(4-3)$ oe
(b)(iii)	$\frac{1}{7}$	2	M1 for $\frac{4-3}{6-1}$ oe
(b)(iv)	$y = \frac{1}{7}x - \frac{2}{7}$ or $7y = x - 2$ oe	3	M1 for gradient = their (iii)
	final answer		M1dep for substituting (2, 0) in a linear equation with their <i>m</i> allow if (2,0) satisfies y=(their(b)(iii) gradient)x+c

04. 0580_s23_	04. 0580_s23_ms_42 Q: 8				
Question	Answer	Marks	Partial Marks		
(a)(i)	Correct expansion of a pair of brackets $x^2 - 4x + [1]x - 4$ or $x^2 - 4x - 2x + 8$ or $x^2 + [1]x - 2x - 2$	aft Mi	accept $x^2 - 3x - 4$ or $x^2 - 6x + 8$ or $x^2 - [1]x - 2$		
	$x^{3} - 4x^{2} + x^{2} - 4x - 2x^{2} + 8x - 2x + 8$ leading to and stating $[y =] x^{3} - 5x^{2} + 2x + 8$	A1	Accept $x^{3} - 3x^{2} - 4x - 2x^{2} + 6x + 8$ or $x^{3} - 6x^{2} + [1]x^{2} + 8x - 6x + 8$ or $x^{3} - [1]x^{2} - 2x - 4x^{2} + 4x + 8$ leading to and stating $[y =]x^{3} - 5x^{2} + 2x + 8$		

Question	Answer	Marks	Partial Marks
(a)(ii)	Correct labelled sketch positive cubic Crossing x -axis at -1 , 2 and 4 only Crossing y – axis at 8 only	4	
			B1 for positive cubic B2 for three intercepts only with x -axis labelled at -1 , 2 and 4
			or B1 for 1 or 2 correctly labelled x – intercepts B1 for a single intercept on y -axis labelled at 8 but not if line $y = 8$
(b)	$3x^2 - 10x - 8 [= 0]$	M3	B2 for derivative = $3x^2 - 10x + 2$ isw OR B1 for derivative with $3x^2$ or $-10x$ given in expression isw M1dep on B1 for <i>their</i> first derivative = 10
	$x = 4 \text{ and } x = -\frac{2}{3}$	B1	
	$(4, 0)$ and $\left(-\frac{2}{3}, \frac{112}{27}\right)$ oe	B1	
	[y =] $10x - 40$ and [y =] $10x + \frac{292}{27}$	B2	B1 for each or for two different equations of the form [y =]10x + c (c must be numeric) or for $c = -40$ and $\frac{292}{27}$

Paper Perfection, Crafted With Passion

 $05.\ 0580_s23_ms_43 \quad Q{:}\ 11$

Question	Answer	Marks	Partial Marks
(a)	10	3	M2 for $(17)^2 + (42)^2$ oe or M1 for (17) or (42) oe
(b)	$\frac{4}{3}$ or $\frac{8}{6}$	2	M1 for $\frac{17}{42}$ oe
(c)	$y = -\frac{3}{4}x - \frac{9}{4}$ or $4y + 3x + 9 = 0$ oe final answers	4	B3 for $-\frac{3}{4}x - \frac{9}{4}$ OR B1 for midpoint $(1, -3)$ M1 for gradient $-\frac{3}{4}$ or $-\frac{1}{their}$ (b) M1 for substituting their $(1, -3)$ into $y = (their \ m)x + c$ or for their $m = \frac{y3}{x - 1}$ oe

06. $0580_s23_ms_43$ Q: 12

Question	Answer	Marks	Partial Marks
(a)	$4x^3 - 16x \text{cao}$	2	M1 for $4x^3 + kx$ or $kx^3 - 16x$ or $4x^3 - 16x + k$ or $4x^3 - 16$ as final answers

AcelGCSE

Question	Answer	Marks	Partial Marks
b	Their $\frac{dy}{dx} = 0$ or stating $\frac{dy}{dx} = 0$	B 1	
	Correct method to solve <i>their</i> $4x^3 - 16x = 0$	M1	e.g. $4x(x^2-4)$ or $4x(x-2)(x+2)$ oe
	[x=]0,-2,2	A1	Or B1 for (-2, -11) and (2, -11)
	(0,5) $(-2,-11)$ $(2,-11)$	A1	
(c)	(0, 5) with correct reasoning	2	 M1 for any of correct use of 2nd derivative 12x² -16 evaluates correctly both values of y on either side evaluates correctly the gradient on either side reasonable correct sketch

07. $0580_{\text{w}}23_{\text{ms}}42$ Q: 9

Question	Answer	Marks	Partial Marks
(a)	$12x^2 - 4x^3$ oe final answer	2	B1 for $12x^2$ or $-4x^3$ in final answer or for correct answer seen

Question	Answer	Marks	Partial Marks
(b)	Acel (2, 27) Paper Perfection, Cr	afted	B2 for $x = 3$ OR M1 for their $12x^2 - 4x^3 = 0$ or better or states $\frac{dy}{dx} = 0$ M1dep for substituting their x into $y = 4x^3 - x^4$ shown
(c)	-64	3	M1 for $4x^3 - x^4 = 0$ B1 for $x = 4$

 $08.\ 0580 \ w23 \ ms_43 \ Q:9$

Question	Answer	Marks	Partial Marks
(a)	$[AB^2 =] (3-0)^2 + (3-2)^2$ oe or better	M1	or $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$ oe
	$[AC^2 =] (0-2)^2 + (4-0)^2$ oe or better	M1	or $\begin{pmatrix} 4 \\ -2 \end{pmatrix}$ oe
	$[BC^2 =] (0-3)^2 + (4-3)^2$ oe or better	M1	or $\begin{pmatrix} 1 \\ -3 \end{pmatrix}$ oe

Question	Answer	Marks	Partial Marks
	Triangle is isosceles [with 10, 20 and 10 or better shown]	A1	or Triangle is isosceles and only vector AB and BC have the same magnitude [because they have the same components]
(b)(i)	$[y=] -\frac{1}{2}x + 2$ oe	3	M1 for $\frac{0-2}{4-0}$ oe M1 for substituting $(0, 2)$ or $(4, 0)$ into $y = their mx + c$ oe or B1 for answer $y = kx + 2$
(b)(ii)	[y=] 2x-3	4	M1 for $\frac{-1}{their \operatorname{grad}(\mathbf{b})(\mathbf{i})}$ B1 for (2, 1) M1 for substituting their (2, 1) into $y = their px + d$ oe
(b)(iii)	(-2, -7) A C C	3	B2 for $w = -2$ or M1 for $4w + 1 = 2w - 3$ FT their (b)(ii) or for $2 = \frac{4w + 1 - 3}{w - 3}$

Paper Perfection, Crafted With Passion

09. $0580 \text{_w} 23 \text{_ms} \text{_43}$ Q: 11

Question	Answer	Marks	Partial Marks
(a)	(-2, 0) (0, 18) (4.5, 0) oe	4	B1 for $B = (0, 18)$ B3 for $A = (-2, 0)$ and $C = (4.5, 0)$ oe or B2 for $x = -2$ and $x = 4.5$ oe or B1 for $(9 - 2x)(2 + x)$ oe or either A or C correct
(b)	5-4x final answer	2	B1 for one correct term when simplified
(c)	(-3, -15)	3	B2FT for $x = -3$ OR M1 for <i>their</i> (b) = 17 M1 dep for correct substitution of <i>their</i> x into $18 + 5x - 2x^2$ shown

10. 0580_s22_ms_42 Q: 3

Question	Answer	Marks	Partial Marks
(a)	8.25 or 8.246	3	M2 for $(35)^2 + (2-4)^2$ oe or better or M1 for (35) and $(2-4)$ oe seen
(b)	[y=] 4x + 7	5	B1 for [midpoint] $(-1, 3)$ soi M1 for [gradient of $l = $] $\frac{4-2}{-5-3}$ oe
	Acel	G	M1 for gradient -1 / their $\left(-\frac{1}{4}\right)$ M1dep on at least M1 for their $(-1, 3)$ substituted into $y = their \ m \times x + c$ oe

Question	Answer	Marks	Partial Marks
(c)	(0, – 8) and (0, 16)	4	B3 for $(0, -8)$ or $(0, 16)$ or for -8 and 16 OR B2 for distance = $[\pm]12$ soi or M1 for $13^2 - (5[-0])^2$ oe B1 for both answers $(0, k)$, $k \ne 0$ or 4 ALT METHOD B3 for $(0, -8)$ or $(0, 16)$ or for -8 and 16 OR M2 for $y^2 - 8y - 128$ [= 0] or for $(y - 4)^2 = 144$ or better or M1 for $13^2 = (-5 - 0)^2 + (4 - y)^2$ oe B1 for both answers $(0, k)$, $k \ne 0$ or 4

$11.\ 0580_s22_ms_43 \quad Q \colon 8$

Question	Answer	Marks	Partial Marks
(a)(i)	(-0.5, 1)	2	B1 for each
(a)(ii)	$\begin{pmatrix} 7 \\ -3 \end{pmatrix}$	2	B1 for each
(a)(iii)	7.62 or 7.615 to 7.616	2	FT their (a)(ii) M1 for $(their 7)^2 + (their -3)^2$ oe
(a)(iv)	[y=]-4x-1 final answer	3	B2 for answer $-4x + c$ [oe] or for correct equation in different form or for $-4x + -1$ or for $-4m - 1$ OR M1 for $\frac{-5 - 7}{12}$ oe M1 for correct substitution shown of $(-2, 7)$ or $(1, -5)$ or their $(-0.5, 1)$ into $y = (their \ m)x + c$ oe OR M1 for $7 = -2m + c$ and $-5 = m + c$ A1 for $m = -4$ and $c = -1$
(a)(v)	$[y=]$ $\frac{1}{4}x + \frac{11}{4}$ final answer	afteg	M1 for grad = $\frac{1}{4}$ oe nfww soi, FT negative reciprocal of <i>their</i> gradient from (iv) M1 for correct substitution shown of (5, 4) into $y = (their \ m)x + c$ oe or, if no substitution shown, (5, 4) satisfies <i>their</i> final linear equation.

Question	Answer	Marks	Partial Marks
(b)	$2x^2 + 11x - 21 [= 0]$	M2	or M1 for $8 - 5x = 2x^2 + 6x - 13$ oe or better
	$(2x-3)(x+7) [= 0] ext{ oe } $ or $-11 \pm \sqrt{11^2 - 4 \times 2 \times (-21)}$ or $-\frac{11}{4} \pm \sqrt{\frac{21}{2} + \left(\frac{11}{4}\right)^2} ext{ oe }$	M2	Allow correct method to solve <i>their</i> quadratic equation e.g. formula, complete the square but not for $2x^2 + 6x - 13$ M1 FT <i>their</i> equation for $2x(x+7) - 3(x+7) = 0$ or $x(2x-3) + 7(2x-3) = 0$ or $(2x+a)(x+b) = 0$ where $ab = -21$ or $2b + a = 11$ OR M1 for $\sqrt{11^2 - 4 \times 2 \times -21}$ or for $\frac{-11 + \sqrt{k}}{2 \times 2}$ or $\frac{-11 - \sqrt{k}}{2 \times 2}$ OR M1 for $\left(x + \frac{11}{4}\right)^2$
	$(\frac{3}{2}, \frac{1}{2})$ and (-7, 43)	В2	B1 for one correct pair or for 2 correct x-values or 2 correct y-values

12. 0580_w22_ms_42 Q: 8

Question	Answer	Marks	Partial Marks
(a)	(22, 11)	2	B1 for each value
(b)	$\frac{their11-3}{their22-2}$ oe or better	M1	
	_1	M1	
	their m		CSE
	Substitution of (12, 7) into $y = (their m)x + c$	M1	Accept $y - 7 = their m(x - 12)$ oe
	leading to $2y + 5x = 74$ final answer	A1	Without error or omission
(c)	32	1	
(d)	145	2	M1 for $\frac{1}{2} \times (their 32 - 3) \times 10$ oe
			or $\frac{1}{2} \times \sqrt{(7-3)^2 + (12-2)^2} \times \sqrt{(their 32-7)^2 + (2-12)^2} \text{ oe}$

 $13.\ 0580_m21_ms_42 \quad Q: 12$

	Answer	Mark	Partial Marks
(a)	17	3	M2 for $3 \times 2x^2 - 7$ or better isw or M1 for $3 \times 2x^2$ oe or $kx^2 - 7$ seen

	Answer	Mark	Partial Marks
(b)(i)	13.4 or 13.41 to 13.42	3	M2 for $\sqrt{(-5-7)^2 + (8-2)^2}$ oe
			or M1 for $(-5-7)^2 + (8-2)^2$ oe
(b)(ii)	[y=] 2x+5 final answer	4	M1 for [gradient of $AB = \frac{8-2}{-5-7}$ oe
			M1dep for gradient $p = -1 \div their - \frac{1}{2}$ oe
			M1dep on previous M1 for substituting (-1, 3) into
			$y = their \ px + c$ oe where $their \ p \neq 0$
(b)(iii)	(5,0)	4	B3 for $\overrightarrow{AD} = \begin{pmatrix} -2 \\ -2 \end{pmatrix}$ or $\overrightarrow{DA} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$
			or coordinates of C (-7, 6) and $\left[\overrightarrow{CD} = \right] \begin{pmatrix} 12 \\ -6 \end{pmatrix}$ oe
			seen or B2 for $a = b = 2$ soi or coordinates of C (-7, 6)
			or M1 for $a = b$ oe soi or for $a^2 + b^2 = (\sqrt{8})^2$ oe
	Acel	G	or $\cos 45 = \frac{a}{\sqrt{8}}$ oe or for $\left[\overrightarrow{DC} = \right] \begin{pmatrix} -12 \\ 6 \end{pmatrix}$ or $\left[\overrightarrow{CD} = \right] \begin{pmatrix} 12 \\ -6 \end{pmatrix}$ seen
	Paper Perfection	, Craf	$ \frac{1}{100} = 1$

 $14.\ 0580_s21_ms_42 \quad Q:9$

	Answer	Mark	Partial Marks
(a)(i)	2	2	M1 for $x(x^2 - 4x + 4)$ or $x(x - 2)^2$ or $(x^2 - 2x)(x - 2)$ or $x^3 - 2ax^2 + a^2x$
(a)(ii)	Correct sketch with curve passing through O and touching (2, 0)	4	B1 for any positive cubic B1 for sketch through or touching O B1 for sketch with min or max touching x-axis once only but not at (0, 0) B1FT their (a)(i) for sketch with min or max touching x-axis at (their 2, 0) and their 2 is labelled or clearly indicated
(b)	y = 20x - 64 final answer nfww	7	B6 for equivalent correct equation OR B2 for $3x^2 - 8x + 4$ isw or B1 for $3x^2$ or $-8x$ seen M2dep for [grad =] 20 soi nfww or M1dep for substituting 4 into <i>their</i> derivative isw B1 for $(4, 16)$ soi M1dep for $16 = their 20 \times 4 + c$ oe

15. 0580_m20_ms_42 Q: 2

	Answer	Mark	Partial Marks
(a)(i)	3 2.25 1	3	B1 for each
(a)(ii)	Fully correct smooth curve Paper Perfection, C	rafte	B3FT for 7 or 6 correct plots B2FT for 5 or 4 correct plots B1FT for 3 correct plots
(a)(iii)	-0.6 to -0.51, 0.75 to 0.85, 1.7 to 1.85	3	B1 for each If 0 scored, SC1 for $y = 1.5$ drawn
(a)(iv)	-3 or −2 or −1 or 0	1	
(b)(i)	Tangent ruled at $x = 1$	1	
(b)(ii)	4.4 to 5.6	2	Dep on tangent at $x = 1$ or close attempt
			M1 for rise/run for their line

	Answer	Mark	Partial Marks
(b)(iii)	y = (4.4 to 5.6)x - (1.8 to 2.2) or [y =] their (b)(ii)x + their(y-intercept)	2	FT for any line but not horizontal or vertical line for 2 marks or B1 B1FT for [m =] their 5 or for their y-intercept

16. 0580_p20_ms_40 Q: 3

	Answer	Mark	Partial Marks
(a)	9 10.5	2	B1 for each
(b)	Fully correct curve	5	SC4 for correct curve, but branches joined B3 FT for 9 or 10 points plotted or B2 FT for 7 or 8 points plotted or B1 FT for 5 or 6 points plotted and B1 for two separate branches not touching or cutting y-axis
(c)	2.1 to 2.6 8.5 to 9	2	B1 for each
(d)	2, 3, 5, 7	2	SC1 for correct 4 values and no more than one extra positive integer or $\pm 2, \pm 3, \pm 5, \pm 7$ or 3 correct values and no extras
(e)	(-2, -12)	1	
(f)(i)	$20 + x^2 = x^3$	M1	for multiplication by x
	$x^3 - x^2 - 20 = 0$	A1	for no errors or omissions
(f)(ii)	Fully correct curve $y = x^2$	2	SC1 for U-shaped parabola, vertex at origin
(f)(iii)	3.1 to 3.6	1	
(f)(iv)	3.[0] to 3.1 or FT their answer to (f)(iii)	1	FT dep on (f)(iii) > 0

	Answer	Mark	Partial Marks
(a)(i)	15.7 or 15.65	3	M2 for $\sqrt{(4-10)^2 + (4-3)^2}$ oe or M1 for $(-4-10)^2 + (4-3)^2$ oe
(a)(ii)	$\frac{-10-4}{4-3}$ [= -2] oe	M1	
	10 = -2(-3) + c Or $-4 = -2(4) + c$ and correct completion to $y = -2x + 4$	A1	
(a)(iii)	$y = \frac{1}{2} x + \frac{11}{4}$ oe	4	M1 for grad = $\frac{1}{2}$ soi M1 for [midpoint =] ($\frac{1}{2}$, 3) M1 for substitution of (1/2, 3) into their $y = mx + c$ oe
(b)(i)	$\left(-\frac{1}{3}, -\frac{22}{27}\right)$ oe and (-5, 50)	6	B2 for $3x^2 + 16x + 5$ Or B1 for one correct M1 for derivative = 0 or <i>their</i> derivative = 0 M1 for $[x =] -\frac{1}{3}$ and $[x =] -5$ B1 for $-\frac{22}{27}$ and 50
(b)(ii)	$\left(-\frac{1}{3}, -\frac{22}{27}\right)$ minimum (-5, 50) maximum with correct reasons	3	B2 for one correct with reason or M1 for correct attempt e.g. 2 nd derivatives, gradients or sketching

AcelGCSE

18. 0580_s20_ms_42 Q: 9

	Answer	Mark	Partial Marks
(a)(i)	$(x+4)^2-25$	2	B1 for $(x+k)^2 - 9 - (their k)^2$ or $(x+4)^2 - h$ or $k = 4$
(a)(ii)	$x + 4 = [\pm] 5$	M1	FT their (a)(i)
	_9 and 1	A1	
(b)	$ \begin{bmatrix} b = 17 \\ c = 1 - 3 \end{bmatrix} $	3	B1 for $[b =] 7$ M1 for $b^2 - 4c = 61$
(c)(i)(a)	Correct sketch	2	B2 for correct quadratic curve with min touching x-axis or B1 for parabola vertex downwards

	Answer	Mark	Partial Marks
(c)(i)(b)	Correct sketch	2	B2 for correct straight line intersecting curve on y-axis or B1 for straight line with positive gradient and positive y-intercept
(c)(ii)	2.8[0] or 2.795 Paper Perfection,	G7 Craft	B3 for $x^2 - \frac{5}{2}x = 0$ oe or M1 for $(x-1)^2 = \frac{1}{2}x + 1$ B1 for $[(x-1)^2 =]x^2 - x - x + 1$
			AND
			B2 for (0, 1) and $\left(\frac{5}{2}, \frac{9}{4}\right)$ oe
			or B1 [$x = $] 0 and $\frac{5}{2}$ oe
			AND
			M1 for (difference in x) ² + (difference in y) ²

19. 0580_s20_ms_43 Q: 9

	Answer	Mark	Partial Marks
(a)(i)	$\frac{3}{8}$	2	M1 for $8y = 3x + 20$ or better
(a)(ii)	(0, 2.5) oe	1	
(b)(i)	15.6 or 15.62	3	M2 for $\sqrt{(9-3)^2 + (-2-8)^2}$ oe seen or M1 for $(9-3)^2$ or $(-2-8)^2$ oe seen
(b)(ii)	$y = -\frac{5}{6}x + 4 \text{ oe}$	3	M1 for gradient $\frac{-2-8}{93}$ oe M1 for substituting $(6, -1)$ into a linear equation oe
(b)(iii)	$y = \frac{6}{5}x - \frac{3}{5}$ oe	4	M1 for gradient $-1 / their \left(-\frac{5}{6} \right)$ B1 for midpoint at (3, 3) M1 for <i>their</i> midpoint substituted into $y = their \ m \times x + c$ oe

20. 0580_s19_ms_42 Q: 4

	Answer	Mark	Partial Marks
(a)(i)	1.5 oe	1	
(a)(ii)	(0, 2)	1	
(b)(i)	y = -2x + 6 oe final answer Paper Perfection	G, Craf	B2 for $y = -2x + c$ oe or $y = mx + 6$ oe $m \ne 0$ or for answer $-2x + 6$ or B1 for [gradient =] $-\frac{6}{3}$ oe or $c = +6$ soi
(b)(ii)	y = 0.5x - 1.5 oe final answer	3	B1 for [gradient =] – 1 divided by <i>their</i> gradient from (b)(i) evaluated soi M1 for substitution of (9, 3) into $y = (their \ m)x + c$ seen in working
(c)(i)	12.6 or 12.64 to 12.65	3	M2 for $\sqrt{(8-4)^2+(5-1)^2}$ oe or M1 for $(8-4)^2+(5-1)^2$ oe
(c)(ii)	(2, 3)	2	B1 for each

21. 0580_s19_ms_43 Q: 7

	Answer	Mark	Partial Marks
(a)	[y=] 4x + 5		B2 for answer $[y =]4x + c$ oe (c can be numeric or algebraic) OR M2 for $\frac{y-9}{x-1} = \frac{9-(-3)}{1-(-2)}$ oe OR M1 for $\frac{93}{12}$ oe or for M1 for correct substitution of $(-2, -3)$ or $(1, 9)$ into $y = (their m)x + c$ oe
(b)	76[.0] or 75.96	2	M1 for tan[] = 4 oe

	Answer	Mark	Partial Marks
(c)(i)	$[y=] -\frac{1}{4}x + \frac{23}{8}$ oe	3	B2FT for $[y =] - \frac{1}{their \text{ gradient from (a)}} x + c$
		19	oe (c can be numeric or algebraic) OR M2 for $\frac{y-2}{x-3.5} = -\frac{1}{their}$ gradient from (a) oe
			OR $\frac{1}{\text{their gradient from (a)}} \text{ soi}$
			M1 for correct substitution of (3.5, 2) into $y = (their \ m)x + c$ oe
(c)(ii)	(-4.5, 4)	2	B1 for each value or for $\begin{pmatrix} -8\\2 \end{pmatrix}$ seen

 $^{22.\,0580} \rm _{^{m18}_{^{ms}}} \rm + ^{42} \rm ^{Q:10}$ Perfection, Crafted With Passion

	Answer	Mark	Partial Marks
(a)	10.8 or 10.81 to 10.82	3	M2 for $\sqrt{(6-3)^2 + (-2-4)^2}$ oe or M1 for $(6-3)^2 + (-2-4)^2$ oe
(b)(i)	(6, 4)	2	B1 for each
(b)(ii)	2	2	M1 for $\frac{12 - (-4)}{10 - 2}$ oe
(b)(iii)	$y = -\frac{1}{2}x + 4$ oe final answer	3	M1 for gradient = $-\frac{1}{2}$ or $-\frac{1}{their(\mathbf{b})(\mathbf{i}\mathbf{i})}$ M1 for (2, 3) substituted into <i>their</i> $y = mx + c$ or $y - y_1 = m(x - x_1)$ oe

23. $0580_s18_ms_43$ Q: 2

	Answer	Mark	Partial Marks
(a)(i)	1,, 16	2	B1 for each
(a)(ii)	14,, -2	2	B1 for each
(b)	Fully correct smooth curves	6	B3 for correct curve of $y = 2^x$ or B2FT for 4 or 5 correct points or B1FT for 2 or 3 correct points B3 for correct curve of $y = 14 - x^2$ or B2FT for 4 or 5 correct points or B1FT for 2 or 3 correct points
(c)(i)	3.5 to 3.7	1	
(c)(ii)	2.65 to 2.8	1	

	Answer	Mark	Partial Marks
(d)(i)	Correct line	1	Ruled, through (4, 2) and gradient -4
(d)(ii)	Tangent (2, 10)	2	B1 for each

$24.\ 0580_s18_ms_43 \quad Q \colon 9$

	Answer	Mark	Partial Marks
(a)	y = -2x + 5 oe	3	B2 for $-2x + 5$ or
			M1 for gradient = $-1 \div \frac{1}{2}$ or better
	Acel		M1 for substituting (1, 3) into $y = (their \ m)x + c$ oe If 0 scored SC1 for (1, 3) satisfying their wrong
	71001		equation $(c \neq 0)$ with gradient $\neq \frac{1}{2}$
	Paper Perfection,	Craf	ed With Passion -
(b)(i)	$x \geqslant 2$ oe		SC3 for $x > 2$ and $y < 5$ and $y > \frac{1}{2}x$
	$y \leqslant 5$ oe		OR
			B1 for $x \ge 2$
	$y \geqslant \frac{1}{2}x$ oe	4	$\mathbf{B1} \text{ for } y \leqslant 5$
	2		$\mathbf{B2} \text{ for } y \geqslant \frac{1}{2}x$
			or M1 for $y \ge kx$ $(k \ge 0)$ OR
			SC2 for all three boundary lines identified but with incorrect sign(s)
			If 0 scored SC1 for one or two correct boundary lines with incorrect sign(s)

	Answer	Mark	Partial Marks
(b)(ii)	(5, 4)	2	M1 for one trial of an integer point inside region or for $3x + 5y = 35$ drawn

 $25.\ 0580_w18_ms_41 \ \ Q: 3$

	Answer	Mark	Partial Marks
(a)	0 -2 0.9	3	B1 for each
(b)	Correct curve	4	B3 FT for 9 or 10 points or B2 FT for 7 or 8 points or B1 FT for 5 or 6 points
(c)	-0.45 to -0.35 1 2.35 to 2.45	3	FT their graph B1 for each in the correct position If zero scored, SC1FT for 3 correct values
(d)(i)	y=1-x oe	2	B1 for $y = 1 - kx$ oe, $k \ne 0$ or $y = k - x$ oe or $1 - x$
(d)(ii)	Correct ruled line and 2.25 to 2.4	3	B2FTdep for correct ruled line or B1 dep for line through $(0, 1)$ when extended but not $y = 1$ or with gradient -1.1 to -0.9 or correct line but freehand or SC2 for $y = x - 1$ ruled after answer [y =]x - 1 in (d)(i) and B1 for 2.25 to 2.4
(e)	Correct tangent and 1.7 to 3.7 Paper Perfection, C	afted	No daylight between tangent and curve at $x = -0.25$. Point of contact is the midpoint between two vertices of daylight and this point of contact must be between -0.35 and -0.15 B2 for close attempt at tangent at $x = -0.25$ and answer in range OR B1 for ruled tangent at $x = -0.25$, no daylight Consider point of contact as midpoint between two vertices of daylight, the midpoint must be between $x = -0.35$ and -0.15 and M1 dep on B1 or close attempt at tangent at $x = -0.25$ for $\frac{rise}{run}$

26. 0580_w18_ms_41 Q: 8

(a) $(5,6)$ (b) $[y=]-\frac{4}{5}x+3$ nfww (a) $[y=]-\frac{4}{5}x+c$ nfww (b) $[y=]-\frac{4}{5}x+c$ nfww (c) $[y=]-\frac{4}{5}x+c$ nfww (d) $[y=]-\frac{4}{5}x+c$ nfww (e) $[y=]-\frac{4}{5}x+c$ nfww (f) $[y=]-\frac{4}{5}x+c$ nfww (g) $[y=]-\frac{4}{5}x+c$ nfww (g) $[y=]-\frac{4}{5}x+c$ nfww (g) $[y=]-\frac{4}{5}x+c$ nfww (g) $[y=]-\frac{4}{5}x+c$ nfww		Answer	Mark	Partial Marks
$\begin{bmatrix} y =] -\frac{1}{5}x + 3 \text{ niww} \\ \text{or } \mathbf{M1} \text{ for } \frac{rise}{run} \text{ using any two of } (-5, 7) \end{bmatrix}$	(a)	(5, 6)	1	
and B1 for $[y =]mx + 3 \ (m \neq 0)$	(b)	$[y=]-\frac{4}{5}x+3 \text{ nfww}$	3	or M1 for $\frac{rise}{run}$ using any two of (-5, 7) (0, 3) and (5, -1)

	Answer	Mark	Partial Marks
(c)	$y = -\frac{4}{5}x - 2$ oe	2	FT their gradient from 8(b)
	5		B1 for $y = (their \text{ gradient})x + c \text{ (}c \text{ not 0)}$ or for $y = mx - 2 \text{ (}m \neq 0 \text{)}$
			or for $-\frac{4}{5}x-2$ alone
(d)(i)	$y = \frac{5}{4}x + 4 \text{ oe}$	3	M1 for $-\frac{1}{their}$ gradient from 8(b) M1 for (8, 14) substituted into their $y = mx + c$ or $\frac{y-14}{x-8} = m$ or better
(d)(ii)	8.54 or 8.544	3	M2 for $(14-their 6)^2 + (8-their 5)^2$ or better or M1 for $14-their 6$ and $8-their 5$ seen
(d)(iii)	(4, 6)	2	B1 for each

Paper Perfection, Crafted With Passion

27. 0580_w18_ms_42 Q: 5

	Answer	Mark	Partial Marks
(a)	-3, 17	2	B1 for each
(b)	Fully correct curve	4	B3 FT for 10 or 11 points or B2 FT for 8 or 9 points or B1 FT for 6 or 7 points
(c)(i)	Correct ruled tangent for <i>their</i> curve through (0, -17)	1	
(c)(ii)	(1.7 to 2.2, -1 to 2.5)	1	
(c)(iii)	[y=] 9x – 17 final answer	3	M2dep for answer $[y =] 9x[+] - c$
			OR M1dep for gradient = $\frac{rise}{run}$ for their tangent at any point B1 for answer $[y =]kx[+] - 17$ $(k \ne 0)$
(d)	$y = 3x + 2$ ruled correctly and $-2.2 \dots$ to -2.1 -0.6 to -0.4 2.6 to 2.8	4	B2 for $y = 3x + 2$ ruled or B1 for $[y =] 3x + 2$ soi or $y = 3x + k$ ruled or $y = kx + 2$ but not $y = 2$ B2 for all 3 values
			or B1 for 2 values

AcelGCSE

28. 0580_m17_ms_42 Q: 3

	ANSWER	MARK	PARTIAL MARKS
(a)	0 0.5 oe 1.25 oe	1, 1, 1	
(b)	Fully correct smooth curve	4	B3 FT for 7 or 8 points or B2 FT for 5 or 6 points or B1 FT for 3 or 4 points
(c)	3.6 to 3.8	2	M1 for $y = 3.5$ soi
(d)	line $y = x + 1$ ruled	M1	
	-1.55 to -1.40 4.55 to 4.8	A1 A1	If 0 scored SC1 for $y = x + 1$ stated or implied or for 2 correct values given
(e) (i)	Point plotted at (5, 5)	1	
(ii)	Tangent ruled from A	1	
(iii)	1.2 to 1.4	В2	B2 and M1 dep on reasonable attempt at tangent from (5, 5)
		167	M1 for change in y / change in x of their ruled line
			T T T T T T T T T T T T T T T T T T T

29. 0580_s17_ms_41 Q: 7

	ANSWER	MARK	PARTIAL MARKS
(a)	(-0.5, 3)	2	B1 for one correct value
(b)	[y =] -2x + 2 final answer	3	M1 for $\frac{-2-8}{2-3}$ or better
	Acel	<u>G</u>	M1 for substitution of $(-3, 8)$ or $(2, -2)$ or <i>their</i> midpoint into $y = mx + c$ with <i>their</i> m
(c)	y = -2x + 7 oer Perfection, C	r a f ź FT	FT their (b) as $x = 0$ M1 for $y = (their - 2)x + k$ ($k \neq 2$) or $y = kx + 7$ ($k \neq 0$)
			If zero scored, SC1 for $(their - 2)x + 7$
(d)	x - 2y + 9 = 0 or $2y - x - 9 = 0$ oe	4	B3 for any correct equivalent in wrong form Or M2 for $y = \frac{1}{2}x + k$ oe (FT negative reciprocal of <i>their</i> gradient in (b)) or M1 for grad = $\frac{1}{2}$ (FT negative reciprocal of <i>their</i> gradient in (b)) M1 for substitution of (1, 5) into $y = mx + c$ oe with <i>their</i> m

30. 0580_w17_ms_43 Q: 8

	ANSWER	MARK	PARTIAL MARKS
(a)(i)	5	1	
(a)(ii)	$-\frac{3}{2}$ oe	1	
(b)	$\left(\frac{4}{5},\ 0\right)$ oe	2	M1 for $5x - 4 = 0$ soi

	ANSWER	MARK	PARTIAL MARKS
(c)	y = -0.2x + 11 final answer	4	M2 for $y = -0.2x + c$ oe (any form) FT their (a) or B1FT for grad = $\frac{-1}{their}$ (a)(i) soi and M1 for substitution of (10, 9) into their equation
(d)	(2, 6)	3	M1 for elimination of one variable A1 for $x = 2$ or $y = 6$
(e)	13	3	M2 for (4 + 9) × their 2 ÷ 2 oe or B1 for 9 oe or 4 or -4 seen

AcelGCSE