Chapter 2

Algebra and graphs

01. $0580 \text{_m} 24 \text{_qp} \text{_42}$ Q: 5

(a) (i) Factorise. $x^2 - x - 12$

(ii) Simplify. $\frac{x^2 - 16}{x^2 - x - 12}$

.....[3]

(c) Write as a single fraction in its simplest form.

$$\frac{2x+4}{x+1} - \frac{x}{x-3}$$

.....[4]

(d) Expand and simplify.

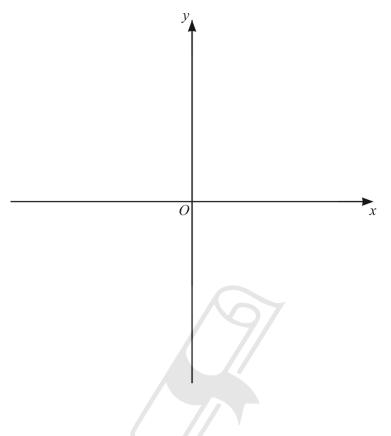
$$(x-3)(x-5)(2x+1)$$

.....[3]

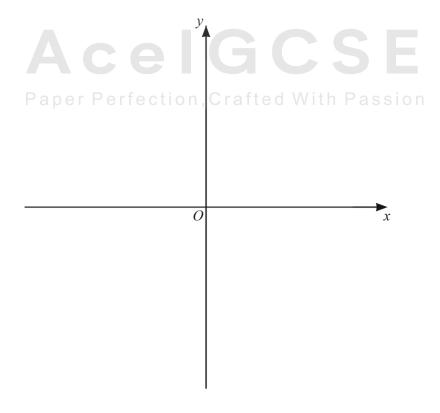
(e) Solve the simultaneous equations. You must show all your working.

$$x - 3y = 13$$
$$2x^2 - 9y = 116$$

AcelGCSE


Paper Perfection, Crafted With Passion

$$x = \dots \qquad y = \dots$$


$$x = \dots y = \dots [6]$$

02. $0580_{m24}_{qp_4}$ Q: 8

(a) On the axes, sketch the graph of y = 4 - 3x.

(b) On the axes, sketch the graph of $y = -x^2$.

[2]

[2]

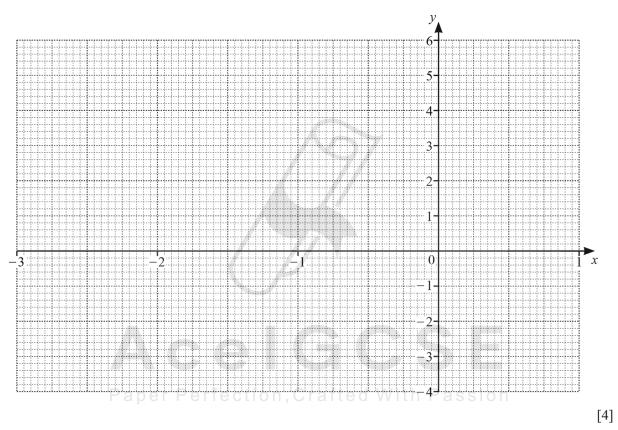
(c)	(i)	Find the coordinates of the turning points of the graph of $y = 10 + 9x^2 - 2x^3$.
		You must show all your working.

(......) and (.....) [5]

(ii) Determine whether each turning point is a maximum or a minimum. Show how you decide.

Paper Perfection, Crafted With Passion

[3]


03. $0580 \text{_m} 24 \text{_qp} \text{_42}$ Q: 10

The table shows some values for $y = 2x^3 + 6x^2 - 2.5$.

x	-3	-2.5	-2	-1.5	-1	-0.5	0	0.5	1
У		3.75	5.5	4.25	1.5		-2.5	-0.75	

(a) Complete the table. [3]

(b) On the grid, draw the graph of $y = 2x^3 + 6x^2 - 2.5$ for $-3 \le x \le 1$.

(c) By drawing a suitable line on the graph, solve the equation $2x^3 + 6x^2 = 4.5$.

 $x = \dots$ or $x = \dots$ [3]

(d) The equation $2x^3 + 6x^2 - 2.5 = k$ has exactly two solutions.

Write down the two possible values of k.

k = or k = [2]

04. $0580 \text{_m} 24 \text{_qp} \text{_42}$ Q: 11

$$f(x) = \frac{1}{x}, x \neq 0$$
 $g(x) = 3x - 5$ $h(x) = 2^x$

$$g(x) = 3x - 5$$

$$h(x) = 2^x$$

- (a) Find.
 - (i) gf(2)

(ii) $g^{-1}(x)$

$$g^{-1}(x) = \dots [2]$$

(b) Find in its simplest form g(x-2).

- (c) Find the value of x when
 - (i) fg(x) = 0.1

AcelGCSE

$$x =$$
 [2]

(ii)
$$h(x) - g(7) = 0$$
.

$$x = \dots$$
 [2]

05. 0580_s24_qp_41 Q: 3

$$(a) C = \frac{1}{4}xy^2$$

(i) Find C when x = 5 and y = 8.

$$C = \dots [2]$$

(ii) Find the positive value of y when C = 15 and x = 2.4.

$$y = \dots [2]$$

(b) Write as a single fraction in its simplest form.

$$\frac{4}{x-1} - \frac{3}{2x+5}$$

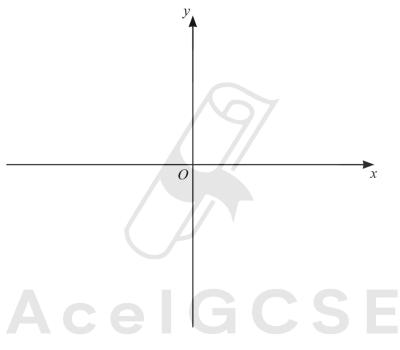
AcelGCSE

Paper Perfection, Crafted With Passion [3]

(c) Expand and simplify. $(2x+3)(4-x)^2$

.....[3]

(d) Simplify.


$$\left(\frac{y^8}{16x^{16}}\right)^{-\frac{3}{4}}$$

.....[3]

06. 0580_s24_qp_41 Q: 8

(a) On the axes, sketch the graph of $y = x^2 + 7x - 18$. On your sketch, write the values where the graph meets the x-axis and the y-axis.

Paper Perfection Crafted With Passion (b) (i) Find the derivative of $y = x^2 - 3x - 28$.

.....[2]

(ii) Find the coordinates of the turning point of $y = x^2 - 3x - 28$.

(.....) [3]

[4]

(c) The line y = 5 - 2x intersects the graph of $y = x^2 - 3x - 28$ at point P and point Q.

Find the coordinates of P and Q.

You must show all your working and give your answers correct to 2 decimal places.

07. 0580_s24_qp_41 Q: 9

$$f(x) = 4x + 1$$
 $g(x) = 6 - 2x$ $h(x) = 3^{x-2}$

$$h(x) = 3^x$$

- (a) Find
 - (i) f(3)

.....[1]

(ii) gf(3).

(b) Find $g^{-1}(x)$.

(c) Find x when f(x) = g(2x-7).

 $x = \dots$ [4]

(d) Find the value of hh(2).

.....[2]

(e) Find x when $h^{-1}(x) = 10$.

x = [2]

08. $0580 \text{ s}24 \text{ qp} \text{ 42 } \text{ Q: 7}$ (a) Solve $3x - 8 = 6 - 4x$.	
(b) Factorise fully $10a^2 + 5a$.	[2]
(c) Factorise fully $(2x-3)^2-9$.	[2]
(d) $f(x) = \frac{1}{4x - 1}, \ x \neq \frac{1}{4} \qquad g(x) = 3^{x}$	[2]
(i) Find f(4). AcelGCSE	[1]
(iii) Find k when $g(k) = f(7)$.	[2]
	[2]

- 09. 0580_s24_qp_42 Q: 11
- (a) The point (-1, 6) lies on a curve.

This curve has the derived function $\frac{dy}{dx} = -4x^3 - 9x^2 + 5$.

Show that (-1, 6) is a stationary point of the curve.

[2]

- **(b)** A different curve has equation $y = 2x^3 6x + 8$.
 - (i) Calculate the gradient of the tangent to this curve at the point (-2, 2).

.....[3]

(ii) Find the x-coordinates of the stationary points of this curve.

AcelGCSE

Paper Perfection, Crafted With Passion

x = and x = [2]

10. $0580_{s24}qp_{43}$ Q: 2

- (a) The *n*th term of a sequence is $120 n^3$.
 - (i) Find the 4th term of this sequence.

.....[1]

(ii) Find the value of n when the nth term is -1211.

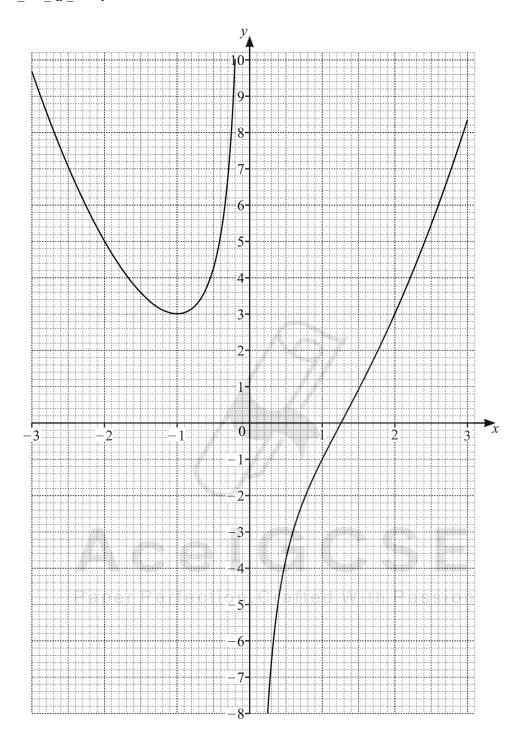
 $n = \dots [2]$

(b) The *n*th term of a different sequence is $3 \times (0.2)^{n-1}$.

Find the 5th term of this sequence.

AcelGCSE

Paper Perfection, Crafted With Passion [1]


(c) The table shows the first four terms of sequences A, B and C.

Sequence	1st term	2nd term	3rd term	4th term	5th term	<i>n</i> th term
A	7	4	1	-2		
В	1/4	<u>2</u> 5	3/6	4/7		
С	0	2	6	12		

Complete the table for each sequence.

11. $0580 _{s24}qp_{43}$ Q: 5

The diagram shows the graph of y = f(x) for values of x from -3 to 3.

(a) (i) Use the graph to find f(2).

......[1]

(ii) Use the graph to solve the equation f(x) = 5.

 $x = \dots$ or $x = \dots$ [3]

(iii) The equation f(x) = k has exactly two solutions.

Write down the value of k.

7		[1	п	
ľ			- 1	
n	_	 1 1		

(iv) tangent asymptote root perpendicular

Choose the correct word from the box to complete the statement.

The line x = 0 is the to the graph of y = f(x). [1]

- **(b)** (i) On the grid, draw the graph of y = x 2 for values of x from -3 to 3. [2]
 - (ii) Find x when f(x) = x 2.

$$x = \dots$$
 [1]

(c) $f(x) = x^2 - \frac{c}{x}, x \neq 0$

Use the graph to show that c = 2.

(d) The equation f(x) = x - 2 can be written as $x^3 + px^2 + qx = 2$.

Find the value of p and the value of q.

$$q = \dots$$
 [2]

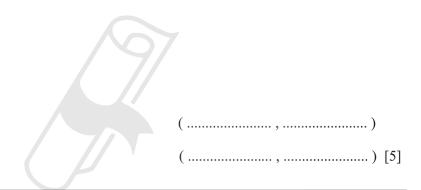
12. 0580_s24_qp_43 Q: 10

$$y = x^7 - 7x^6$$

(a) Find the derivative of y with respect to x.

.....[2]

(b) Find the equation of the tangent to the graph of $y = x^7 - 7x^6$ at the point where x = -1. Give your answer in the form y = mx + c.



AcelGCSE

Paper Perfection, Crafted WTth Passion [4]

(c) The graph of $y = x^7 - 7x^6$ has two turning points.

Find the coordinates of these points. You must show all your working.

AcelGCSE

Paper Perfection, Crafted With Passion

- 13. $0580 \text{_m} 23 \text{_qp} 42 \text{ Q: } 5$
- (a) Expand and simplify. $(2p^2-3)(3p^2-2)$

- **(b)** $s = \frac{1}{2}(u+v)t$
 - (i) Find the value of s when u = 20, v = 30 and t = 7.

(ii) Rearrange the formula to write v in terms of s, u and t.

- (c) Factorise completely.
 - (i) 2qt-3t-6+4q

Paper Perfection, Crafted With Passion

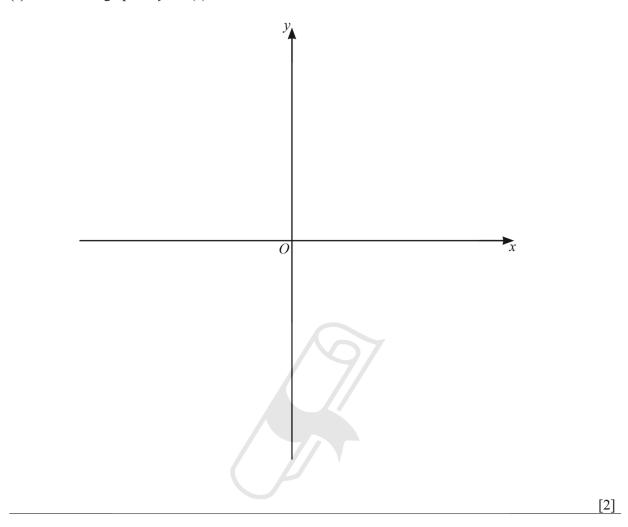
	[2]
--	-----

(ii) $x^3 - 25x$

.....[3]

14. 0580_m23_qp_42 Q: 9

$$f(x) = x^3 - 3x^2 - 4$$


(a) Find the gradient of the graph of y = f(x) where x = 1.

.....[3]

(b) Find the coordinates of the turning points of the graph of y = f(x).

(c) Sketch the graph of y = f(x).

AcelGCSE

Paper Perfection, Crafted With Passion

15. $0580 \text{_m} 23 \text{_qp} \text{_42}$ Q: 11

$$f(x) = 2x - 1$$

$$g(x) = 3x + 2$$

$$f(x) = 2x - 1$$
 $g(x) = 3x + 2$ $h(x) = \frac{1}{x}, x \neq 0$ $j(x) = x^2$

$$j(x) = x^2$$

(a) Find j(-1).

 11	
 - I	

(b) Find *x* when f(x) + g(x) = 0.

$$x =$$
 [2]

(c) Find gg(x), giving your answer in its simplest form.

(d) Find hf(x) + gh(x), giving your answer as a single fraction in its simplest form.

(e) When pp(x) = x, p(x) is a function such that $p^{-1}(x) = p(x)$.

Draw a ring around the function that has this property.

$$f(x) = 2x - 1$$

$$g(x) = 3x + 2$$

$$f(x) = 2x - 1$$
 $g(x) = 3x + 2$ $h(x) = \frac{1}{x}, x \neq 0$ $j(x) = x^2$

$$j(x) = x^2$$

[1]

16. $0580 _{s23}qp_{41}$ Q: 7

- (a) Factorise fully.
 - (i) $27y^2 3$

.....[3]

(ii) 2m - pk + 2k - pm

(b) Solve $\frac{x-1}{x+1} - \frac{6}{x-1} = 1$.

(c) Solve $4x^2 - 3x - 2 = 0$. You must show all your working and give your answers correct to 2 decimal places.

$$x = \dots$$
 or $x = \dots$ [4]

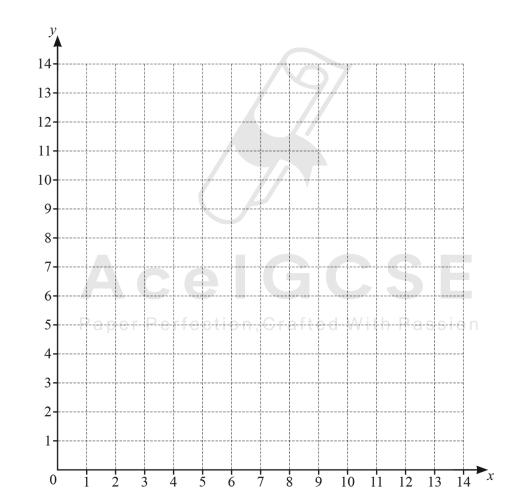
(d) Make k the subject of the formula.

$$\frac{k}{m} = 4 + kp$$

$$k = \dots$$
 [4]

17. 0580_s23_qp_41 Q: 8

A tailor makes *x* dresses and *y* shirts in one week. In one week


- he makes at least 4 dresses
- he makes no more than 7 shirts
- he makes less than 14 dresses and shirts altogether
- the number of shirts he makes is more than $\frac{2}{3}$ of the number of dresses.

One of the inequalities that shows this information is $x \ge 4$.

(a) Write down the other three inequalities in x and/or y.

......[3]

(b)

On the grid, draw 4 straight lines and shade the unwanted regions to show these inequalities.

Label the region R that satisfies the 4 inequalities.

[6]

(c)	Use your diagram to find the	smallest number	of dresses	and the	smallest	number	of shirts	the
	tailor makes in one week.							

	dresses	and		shirts	[1]	
--	---------	-----	--	--------	-----	--

(d) The profit the tailor makes on one dress is \$10 and the profit on one shirt is \$6.

Use your diagram to find the largest profit the tailor can make in one week.

\$ [2]

$$f(x) = x - 4$$

$$f(x) = x-4$$
 $g(x) = 2x+5$ $h(x) = 3^x$

$$h(x) = 3^{3}$$

- (a) Find
 - (i) f(-3)

.....[1]

(ii) $g^{-1}(x)$

(iii) $f(x) \times g(x) \times f(x)$.

(b) Find x when h(x) = g(f(2)). rection, Crafted With Passion

$$x = \dots$$
 [2]

10	0580	623	an	49	0.6	c
19.	0080	SZ3	qp	42	Ų∷ (ũ

- (a) A sequence has *n*th term $\frac{n}{2n+3}$.
 - (i) Find the first three terms of this sequence.

Give your answers as fractions.

(ii) The kth term of this sequence is $\frac{12}{25}$. Find the value of k.

$$k = \dots$$
 [2]

- **(b)** Find the *n*th term of each sequence.
 - (i) 6,

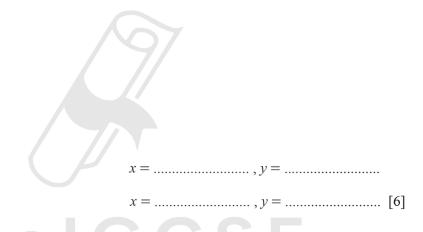
130, 69,

(ii) 100, 50, 25, 12.5, 6.25, ...

20. 0580_s23_qp_42 Q: 9

- (a) Simplify.
 - (i) $(3x^2y^4)^3$

(ii) Simplify. $x^{2}-9$ 2xy-6y+5x-15Paper Perfection, Crafted With Passion


.....[3]

.....[1]

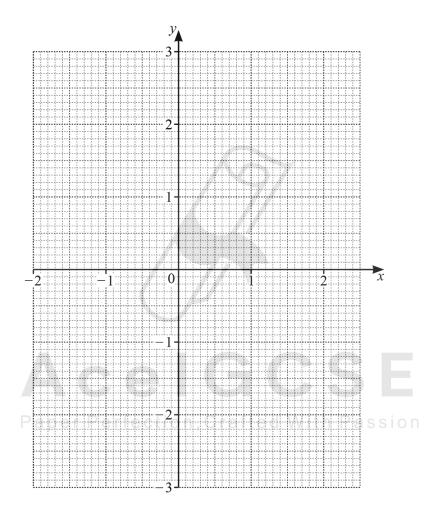
(c) Solve the simultaneous equations.

You must show all your working and give your answers correct to 2 decimal places.

$$2x + y = 7$$
$$y = 5x^2 + 2x - 13$$

Paper Perfection Crafted With Passion

[3]


21. 0580_s23_qp_43 Q: 10

The table shows some values for $y = 2^x - 3$.

х	-2	-1	0	0.5	1	1.5	2	2.5
у	-2.75			-1.58		-0.17	1	2.66

(a) Complete the table.

(b) On the grid, draw the graph of $y = 2^x - 3$ for $-2 \le x \le 2.5$.

(c) Use your graph to solve the equation $2^x - 3 = 2$.

 $x = \dots$ [1]

(d) By drawing a suitable straight line, solve the equation $2^x - x - 1.5 = 0$.

x = or x = [4]

[4]

22. 0580_w23_qp_41 Q: 2

$$(a) s = \frac{1}{2}at^2$$

Find the value of s when a = 9.8 and t = 20.

$$s = \dots$$
 [2]

(b) Solve.

$$5(4y-3) = 15$$

$$y =$$
 [3

(c) Expand and simplify.

$$3(5x-8)-2(3x-7)$$

(d) Rearrange $A = 2b^2 - 3c^3$ to make c the subject.

AcelGCSE

Paper Perfection, Crafted With Passion

$$c = \dots [3]$$

(e) Factorise completely.

$$6pq - 4q - 3p + 2$$

23. $0580_{23}qp_{41}$ Q: 6

(a)

Sequence	1st term	2nd term	3rd term	4th term	5th term	nth term
A	-7	-3	1	5		
В	7	13	23	37		
С	$\frac{2}{27}$	3 81	$\frac{4}{243}$	5 729		

Complete the table for the three sequences.

[10]

(b) In a sequence, the sum of the first 49 terms is 7644. The sum of the first 50 terms is 7975.

Find the 50th term of this sequence.

	г.	•	-
		1	
	т.	1	

24. $0580_{23}qp_{41}$ Q: 9 f(x) = (3x+1)(x+5)(x-4) g(x) = 2x-3 $h(x) = 4^{2x-1}$ (a) Find (i) f(0).....[1] (ii) $g^{-1}(x)$ $g^{-1}(x) = \dots [2]$ (iii) gh(2). **(b)** g(2x) = 7Find the value of x. $x = \dots$ [2] (c) Simplify $g(x^2) + gg(x) + 1$.

.....[3]

(d) Find $h^{-1}(16)$.

(e)
$$f(x) = (3x+1)(x+5)(x-4)$$

This can be written in the form $f(x) = ax^3 + bx^2 + cx + d$.

Find the value of each of a, b, c and d.

Paper Perfection, Crafted With Passion

 $25.\ 0580_w23_qp_41\ Q:\ 11$

(a) Differentiate $x^3 - 4x^2 - 3x$.

 [2]
 $\Gamma - 1$

(b) A curve has equation $y = x^3 - 4x^2 - 3x$.

Work out the coordinates of the two stationary points. Show all your working.

(c) Determine whether each stationary point is a maximum or a minimum. Show all your working.

[3]

AcelGCSE

26. 0580 w 23 qp 42 Q: 5

(a) In a shop the cost of a fiction book is x and the cost of a reference book is x+2. The cost of 11 fiction books is the same as the cost of 10 reference books.

Find the value of x.

$$x = \dots [2]$$

- (b) In another shop, the cost of a fiction book is y and the cost of a reference book is y+2. Maria spends 95 on fiction books and 147 on reference books. She buys a total of 12 books.
 - (i) Show that $6y^2 109y 95 = 0$.

AcelGCSE

Paper Perfection, Crafted With Passion [4]

(ii) Factorise $6y^2 - 109y - 95$.

.....[2]

(iii) Find the value of y.

 $y = \dots$ [1]

27. $0580_{2} = 23_{2} = 22$ Q: 11

$$f(x) = 1 - 3x$$
 $g(x) = (x - 1)^2$ $h(x) = \frac{3}{x}, x \neq 0$

(a) Find g(3).

.....[1]

(b) Find f(x-2), giving your answer in its simplest form.

.....[2]

(c) Find $f^{-1}(x)$.

 $f^{-1}(x) = \dots [2]$

(d) $gf(x) - g(x)f(x) = 3x^3 + ax^2 + bx + c$

Find the value of each of a, b and c.

AcelGCSE

a =	
b =	

$$c = \dots$$
 [5]

(e) Find h(x) - f(x), giving your answer as a single fraction in its simplest form.

.....[3]

(f) $h(x^n) = 3x^7$

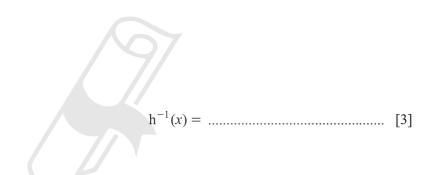
Find the value of n.

AcelGCSE

$$f(x) = 5x - 3$$

$$g(x) = 64^{3}$$

$$g(x) = 64^x$$
 $h(x) = \frac{2}{x+1}, \quad x \neq -1$


- (a) Find the value of
 - **(i)** f(2)

(ii) gf(0.5).

(b) Find $h^{-1}(x)$.

(c) Find x when $g(x) = \frac{1}{2^5}$.

Paper Perfection, Crafted With Passion x = [2]

(d) Write as a single fraction in its simplest form $\frac{1}{f(x)} - h(x)$.

.....[4]

29. 0580_w23_qp_43 Q: 10

(a) Expand and simplify.

$$4(2x-1)-6(3-x)$$

.....[2]

- (b) Factorise completely.
 - (i) $6x^2y + 9xy$

- (c) Antonio travels $100 \,\mathrm{km}$ at an average speed of $x \,\mathrm{km/h}$. He then travels a further $150 \,\mathrm{km}$ at an average speed of $(x+10) \,\mathrm{km/h}$. The time taken for the whole journey is 4 hours 20 minutes.
 - (i) Show that $13x^2 620x 3000 = 0$.

[4]

(ii) Solve $13x^2 - 620x - 3000 = 0$ to find the speed Antonio travels for the first 100 km of the journey.

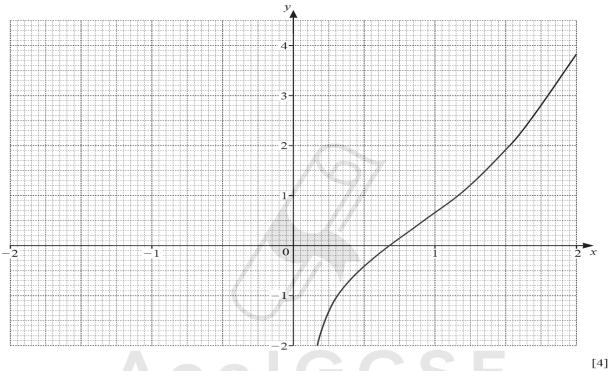
You must show all your working and give your answer correct to 1 decimal place.

Paper Perfection, Crafted With Passion

..... km/h [3]

30. $0580 \text{_m} 22 \text{_qp} \text{_42}$ Q: 2

The table shows some values for $y = x^2 - \frac{1}{3x}$, $x \neq 0$. The y-values are rounded to 1 decimal place.


x	-2	-1.5	-1	-0.75	-0.5	-0.25	-0.1
y	4.2	2.5	1.3			1.4	3.3

(a) Complete the table.

[2]

(b) On the grid, draw the graph of $y = x^2 - \frac{1}{3x}$ for $-2 \le x \le -0.1$.

The graph of $y = x^2 - \frac{1}{3x}$ for x > 0 has been drawn for you.

(c) By drawing a suitable line on the grid, solve the equation $x^2 - \frac{1}{3x} + 1 = 0$.

.....[2]

31. 0580_m22_qp_42 Q: 3

$$f(x) = 1 + 4x$$

$$g(x) = x^2$$

- (a) Find
 - (i) gf(3),

(ii) fg(x),

.....[1]

(iii) $f^{-1}f(x)$.

.....[1]

(b) Find the value of x when f(x) = 15.

 $x = \dots [2]$

AcelGCSE

32. $0580 \text{_m} 22 \text{_qp} \text{_42}$ Q: 8

Darpan runs a distance of $12 \,\mathrm{km}$ and then cycles a distance of $26 \,\mathrm{km}$. His running speed is $x \,\mathrm{km/h}$ and his cycling speed is $10 \,\mathrm{km/h}$ faster than his running speed. He takes a total time of 2 hours $48 \,\mathrm{minutes}$.

(a) An expression for the time, in hours, Darpan takes to run the 12 km is $\frac{12}{x}$.

Write an equation, in terms of x, for the total time he takes in hours.

.....[3]

(b) Show that this equation simplifies to $7x^2 - 25x - 300 = 0$.

[4]

(c) Use the quadratic formula to solve $7x^2 - 25x - 300 = 0$. You must show all your working.

(d) Calculate the number of minutes Darpan takes to run the 12 km.

Paper Perfection, Crafted With Passion

..... min [2]

- 33. $0580 \text{_m} 22 \text{_qp} 42 \text{ Q: } 10$
- (a) Expand and simplify. (x+1)(x-2)(x+3)

.....[3]

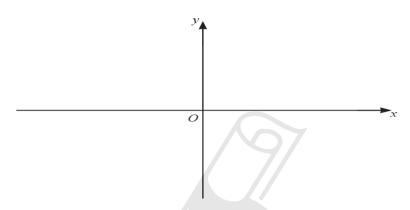
(b) Make g the subject of the formula.

$$M = \frac{2fg}{g - c}$$

- g = [4 (c) Simplify.

AcelGCSE

34. $0580 \text{_m} 22 \text{_qp} \text{_42}$ Q: 12


(a) Solve the equation $\tan x = 11.43$ for $0^{\circ} \le x \le 360^{\circ}$.

 $x = \dots$ or $x = \dots$ [2]

[3]

51

(b) Sketch the curve $y = x^3 - 4x$.

(c) A curve has equation $y = x^3 + ax + b$. The stationary points of the curve have coordinates (2, k) and (-2, 10 - k).

Work out the value of a, the value of b and the value of k.

35. 0580 s 22 qp 41 Q: 3

- (a) Geeta buys x apples, (x+7) oranges and (2x-1) bananas. The total number of pieces of fruit Geeta buys is 30.
 - (i) Find the number of apples Geeta buys.

.....[3]

(ii) The cost of one apple is 15 cents.
The cost of one orange is 18 cents.
The total cost of all the fruit is \$5.55.

Find the cost, in cents, of one banana.

..... cents [3]

(b) (i) Solve.

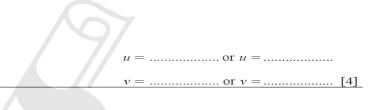
(ii)

$$\frac{3w}{16} - 1 = \frac{1}{2}$$

 $w = \dots$ [2]

Find the value of y.

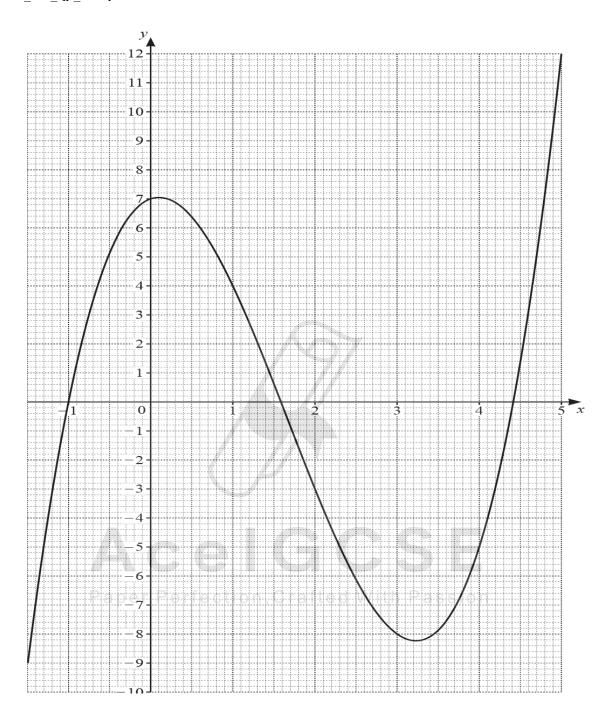
AcelGCSE


(c) (i) Solve the simultaneous equations. 2p+q=2

$$2p + q = 2$$
$$p - q = -\frac{1}{2}$$

$$p = \dots$$
 $q = \dots$ [2]

(ii) Hence, for $0^{\circ} \le u \le 360^{\circ}$ and $0^{\circ} \le v \le 360^{\circ}$, solve the simultaneous equations.


$$2\sin u + \cos v = 2$$
$$\sin u - \cos v = -\frac{1}{2}$$

AcelGCSE

36. (0580_s22_qp_41 Q: 4	
(a)	$f(x) = 2x - 1$ $g(x) = 3x - 2$ $h(x) = \frac{1}{x}, x \neq 0$ $j(x) = 5^x$ Find (i) $f(2)$,	
	(ii) gf(2).	[1]
	Find $g^{-1}(x)$.	[1]
(c)	$g^{-1}(x) = \dots$ Find x when $h(x) = j(-2)$.	[2]
(d)	$x = \dots$ Write $f(x) - h(x)$ as a single fraction.	[2]
(e)	Find the value of jj (2). Paper Perfection, Crafted With Passion	[2]
(f)	Find x when $j^{-1}(x) = 4$.	[1]

(a)

The	diagram shows the graph of	y = f(x)	for $-1.5 \le x \le 5$.
(i)	Find $f(2)$.		

(ii) Solve the equation f(x) = 0 for $-1.5 \le x \le 5$.

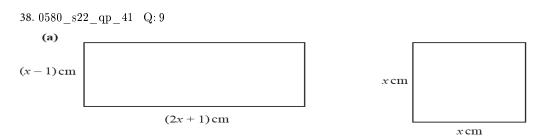
 $x = \dots$ or $x = \dots$ or $x = \dots$ [3]

f(x) = k has three solutions for $-1.5 \le x \le 5$ where k is an integer.

Find the smallest possible value of k.

$$k = \dots$$
 [1]

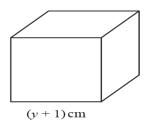
- (iv) On the grid, draw a line y = mx so that f(x) = mx has exactly one solution for $-1.5 \le x \le 5$.
- $y = 3x^2 12x + 7$ **(b)**
 - (i) Find the value of $\frac{dy}{dx}$ when x = 5.

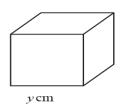

(ii) Find the coordinates of the point on the graph of $y = 3x^2 - 12x + 7$ where the gradient is 0.

(c) When $y = 2x^p + qx^2$, $\frac{dy}{dx} = 14x^6 + 6x$.

Find the value of p and the value of q.

Paper Perfection, Crafted $\widehat{\mathbf{W}}_{q}$ ith Passion [2]




The area of the rectangle is $29\,\mathrm{cm}^2$ greater than the area of the square. The difference between the perimeters of the two shapes is $k\,\mathrm{cm}$.

Find the value of k. You must show all your working.

(b)

The volume of the larger cube is 5 cm³ greater than the volume of the smaller cube.

(i) Show that $3y^2 + 3y - 4 = 0$.

[4]

(ii) Find the volume of the smaller cube. Show all your working and give your answer correct to 2 decimal places.

AcelGCSE

cm³ [4

39. 0580_s22_qp_42 Q: 8

(a) Solve.
$$10-3p=3+11p$$

(b) Make m the subject of the formula.

$$mc^2 - 2k = mg$$

 $m = \dots [3]$

(c) Solve.

$$\frac{1}{x-3} + \frac{4}{2x+3} = 1$$

AcelGCSE

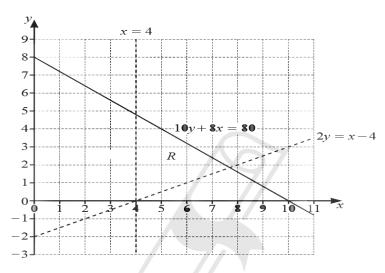
(d) Solve the simultaneous equations. You must show all your working.

$$x + 2y = 12$$
$$5x + y^2 = 39$$

(e) Expand and simplify.

$$(2x-3)(x+6)(x-4)$$

AcelGCSE


 $40.\ 0580_s22_qp_42 \quad Q:10$

(a) Find all the positive integers which satisfy the inequality.

$$3n-8 > 5n-15$$

.....[2]

(b)

The region marked R is defined by three inequalities.

(i) Find these three inequalities.

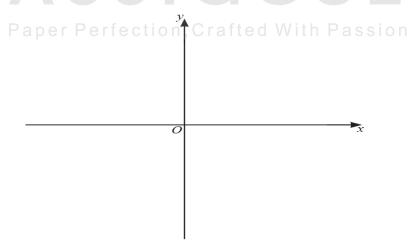
AcelGCSE

(ii) Write down the largest value of 3x + y in the region R for integers x and y.

......[2]

 $41.\ 0580_s22_qp_42 \quad Q: 12$

A curve has equation $y = x^3 - kx^2 + 1$. When x = 2, the gradient of the curve is 6.


(a) Show that k = 1.5.

[5]

(b) Find the coordinates of the two stationary points of $y = x^3 - 1.5x^2 + 1$. You must show all your working.

(c) Sketch the curve $y = x^3 - 1.5x^2 + 1$

[2]

 $42.\ 0580_s22_qp_43 \quad Q; \\ 3$

(a) The table shows the numbers of tigers reported to be living in the wild in the year 2014 in some countries.

Country	Number
India	2226
Indonesia	371
Nepal	198
Bangladesh	106

		_	
(i)	Using	the	table.

(ii)

(a)	find the number	of tigers in Nepa	l as a percentage	of the number of	of tigers in	Bangladesh

% [1]
(b) find the ratio tigers in Bangladesh: tigers in Indonesia: tigers in India, giving your answer in its simplest form.
[2]
Five years later, the number of tigers reported in India was 2967.
Find the percentage increase in the population of tigers in India.

(iii) The number of tigers in India in the year 2014 is approximately 30.48% greater than in the year 2010.

Find the number of tigers in India in the year 2010. Give your answer correct to the nearest integer.

Paner Perfection Crafted With Passion

.....[3]

..... % [2]

(b) At the start of June, a hive has a population of 2000 bees. Three months after the start of June the hive has a population of 2662 bees.

The population of this hive can be calculated using the formula

$$P = ab^x$$
,

where P is the population of the hive x months after the start of June.

By finding the value of a and the value of b, calculate the population of the hive 7 months after the start of June.

Give your answer correct to the nearest integer.

[5]

AcelGCSE

43. 0580_s22_qp_43 Q: 6

(a) Simplify.

$$a-2b-3a+7b$$

.....[2]

(b) Expand and simplify.

$$4(x-5)-(3-2x)$$

.....[2]

(c) Write as a single fraction in its simplest form.

$$\frac{3}{x-5} - \frac{7}{2x}$$

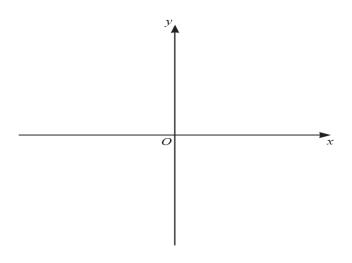
.....[3]

(d) Solve.

$$\frac{13 - 4x}{3} = 6 - x$$

AcelGCSE

Paper Perfection, Crafted With Passion


(e) Make x the subject of the formula. $x = \dots$ [3]

$$y = \frac{5(p-2x)}{x}$$

 $x = \dots$ [4]

 $44.\ 0580_s22_qp_43 \quad Q: 9$

(a) Sketch the graph of y = (x+1)(3-x)(3+x), indicating the coordinates of the points where the graph crosses the x-axis and the y-axis.

(b) (i) Show that y = (x+1)(3-x)(3+x) can be written as $y = 9+9x-x^2-x^3$.

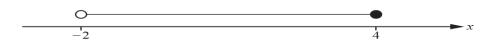
[2]

[4]

AcelGCSE

(ii)	Calculate the x-values of the turning points of $y = 9 + 9x - x^2 - x^3$.
	Show all your working and give your answers correct to 2 decimal places.

x =	x =	Г71


(iii) The equation $9+9x-x^2-x^3=k$ has one solution only when k < a and when k > b, where a and b are integers.

Find the maximum value of a and the minimum value of b.

$$b =$$
 [3]

 $45.0580 w22 qp_41 Q: 3$

(a)

Write down the inequality shown by the number line.

.....[1]

- **(b)** $-3 \le 2x + 3 < 9$
 - (i) Solve the inequality.

-[3]
- (ii) Write down all the integer values of x that satisfy the inequality.
 -[2]

- (c) Solve the equations.
 - (i) $3(3-x) \frac{2(x+2)}{5} = 1$

(ii) $\frac{5}{x+3} = \frac{3}{x+5}$

AcelGCSE

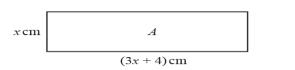
(e) Write f(x) + g(x) + 1 as a single fraction in its simplest form.

(f) $(f(x))^2 - ff(x) = ax^2 + bx + c$

Find the values of a, b and c.

a =	
b =	
c =	 [4]

(g) Find x when $h^{-1}(x) = 10$.



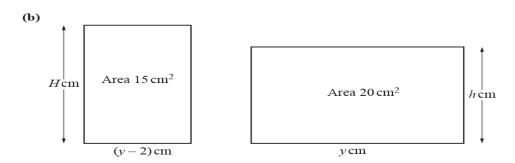
AcelGCSE

 $47.\ 0580_w22_qp_41\quad Q{:}\ 9$

(a)

The total of the areas of rectangles A and B is $20 \,\mathrm{cm}^2$.

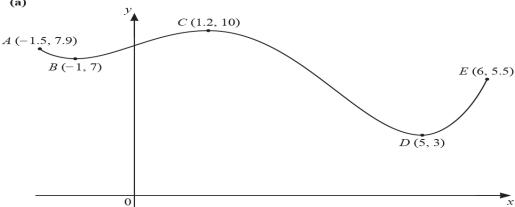
(i) Show that $3x^2 + 6x - 22 = 0$.


[2]

(ii) Solve the equation $3x^2 + 6x - 22 = 0$, giving your answers correct to 4 significant figures. You must show all your working.

(iii) Find the perimeter of rectangle B.

The diagram shows two rectangles where H - h = 1.


By forming a quadratic equation and factorising, find the value of y.

Paper Perfection, Crafted With Passion

 $48.\ 0580 _ w22 _ qp _ 41 \quad Q:10$

The diagram shows a sketch of the graph of y = f(x) for $-1.5 \le x \le 6$. The coordinates of five points on the graph of y = f(x) are shown on the diagram.

f(x) = k has two solutions in the interval $-1.5 \le x \le 6$.

Write down a possible integer value of k.

$$k = \dots$$
 [1]

(ii) f(x) = j has no solutions in the interval $-1.5 \le x \le 6$ when j < a or j > b.

Find the maximum value of a and the minimum value of b.

(b) Find the coordinates of the two stationary points on the graph of $y = x^6 - 6x^5$.

You must show all your weaking You must show all your working.

(.)	
()	Γ5

 $49.\ 0580 _ w22 _ qp _ 42 \quad Q: 1$

(a) (i) At a football club, season tickets are sold for seated areas and for standing areas. The cost of season tickets are in the ratio seated: standing = 5:3. The cost of a season ticket for the standing area is \$45.

Find the cost of a season ticket for the seated area.

\$.....[2]

(ii) In 2021, the value of the team's players was \$2.65 million. In 2022 this value has decreased by 12%.

Find the value in 2022.

\$..... million [2]

(iii) The number of people at a football match is 1455. This is 6.25% of the total number of people allowed in the stadium.

Find the total number of people allowed in the stadium.

.....[2]

(iv) The average attendance increased exponentially by 4% each year for the three years from 2016 to 2019.

In 2019 the average attendance was 1631.

Find the average attendance for 2016.

AcelGCSE

(b)	Another club sells season tickets for individuals and for	families.
	In 2018, the number of season tickets sold is in the ratio	family: individual $= 2:7$.

(i) The number of family season tickets sold is x.

Write an expression, in terms of x, for the number of individual season tickets sold.

.....[1]

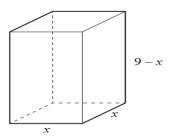
(ii) In 2019, the number of family season tickets sold increases by 12 and the number of individual season tickets sold decreases by 26.

Complete the table by writing expressions, in terms of x, for the number of tickets sold each year.

Year	Family tickets	Individual tickets
2018	x	
2019		

[2]

(iii) In 2019, the number of individual season tickets sold is 3 times the number of family season tickets sold.


Write an equation in x and solve it to find the number of family tickets sold in 2018.

 $x = \dots$ [4]

AcelGCSE

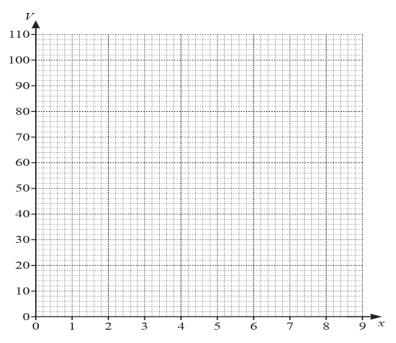
 $50.\ 0580 _ w22 _ qp _ 42 \quad Q: 2$

All the lengths in this question are measured in centimetres.

The diagram shows a solid cuboid with a square base.

(a) The volume, $V \text{cm}^3$, of the cuboid is $V = x^2(9-x)$. The table shows some values of V for $0 \le x \le 9$.

x	0	1	2	3	4	5	6	7	8	9
V	0	8		54	80	100	108	98	64	О


(i) Complete the table.

[1]

- (ii) On the grid on the opposite page, draw the graph of $V = x^2(9-x)$ for $0 \le x \le 9$. [4]
- (iii) Find the values of x when the volume of the cuboid is $44 \, \text{cm}^3$.

$$x = \dots$$
 or $x = \dots$ [2]

AcelGCSE

(b) (i) Show that the total surface area of the cuboid is $(36x-2x^2)$ cm².

(ii) Find the surface area when the volume of the cuboid is a maximum.

Paper Perfection. Crafted With Passion

[2]

51. (1980_w22_qp_42_Q; 6
(a)	Solve. $4x + 15 = 9$
	x = [2]
(b)	Factorise.
	a^2-9
	[1]
(c)	Write as a single fraction in its simplest form.
(-)	$\frac{4a}{5} \cdot \frac{3ad}{10c}$
	3 100
	[3]
(d)	$5^n + 5^n + 5^n + 5^n + 5^n = 5^m$
	Find an expression for m in terms of n .
	$m = \dots $ [2]
(e)	Solve by factorisation
	$4x^2 + 8x - 5 = 0$

Paper Perfection, Crafted With...P.a.s.son [3]

(f)	(i)	y is directly proportional to $(x+3)^3$. When $x = 2$, $y = 13.5$.		
		Find x when $y = 108$.		
			<i>x</i> =	[3]
	(ii)	g is inversely proportional to the square of d . When d is halved, the value of g is multiplied by a factorization.	actor n.	
		Find <i>n</i> .		
			<i>n</i> =	[2]
(g)	Exp	pand and simplify. $(2x+3)(x-1)(x+3)$		
				[3]
(h)	Fin	and the derivative, $\frac{dy}{dx}$, of $y = 3x^2 + 4x - 1$.		
			CCE	[2]
		Acelu	U J E	

52.	0580	w22	αp	43	Q: 2
~	0000		912		~c

- (a) Simplify fully.
 - (i) $p^3 \times p^{11}$
 - (ii) $\frac{18m^6}{3m^2}$

.....[2]

.....[1]

(iii) $\left(\frac{27x^9y^{27}}{64}\right)^{-\frac{1}{3}}$

.....[3]

(b) A sequence has nth term $3n^2$.

Write down the first 3 terms of this sequence.

- (c) Find the nth term for each of these sequences.
 - (i) 13, 16, 19, 22, 25, ...
 -[2]
 - (ii) 3, 17, 55, 129, 251, ...

Paper Perfection, Crafted With Passion

.....[2]

(d) Solve.

$$\frac{3x-22}{4} = 23$$

- x = [3]
- (e) Use the quadratic formula to solve $3x^2 + 8x 20 = 0$. Show all your working and give your answers correct to 2 decimal places.

$$x = \dots, x = \dots$$
 [4]

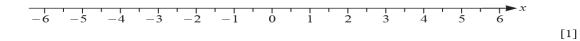
53. 0580_w22_qp_43 Q: 6

- (a) $P = 5k^2 7$
 - (i) Find the value of P when k = 3.

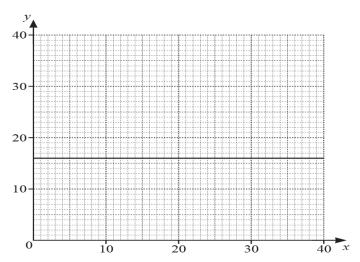
$$P =$$
 [2]

(ii) Rearrange the formula to make k the subject.

AcelGCSE


Paper Perfection, Crafted With Passion

$$k = \dots [3]$$


(b) (i) Solve.

$$x - 3 \le 5x + 7$$

-[2]
- (ii) Show your answer to part (b)(i) on the number line.

(c) The line y = 16 is drawn on the grid.

The region R satisfies the following inequalities.

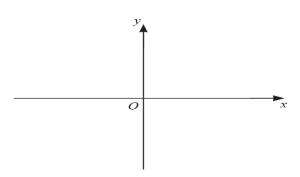
 $v \ge 16$

x > 2

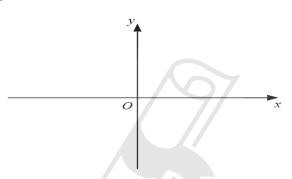
 $2x + 3y \ge 72$

 $y \leq 32 - x$

- (i) By drawing three more lines and shading the region **not required**, find and label region R.
- (ii) Find the integer coordinates (x, y) in the region R that give the maximum value of 2x + y.


.....) [2]

AcelGCSE


54. 0580_w22_qp_43 Q: 9

(a) Sketch the following graphs.
On each sketch, indicate any intercepts with the axes.

(i)
$$3x - 4y = 12$$

(ii) $y = x^2 - 3x - 4$

(iii) $y = 6^x$

[2]

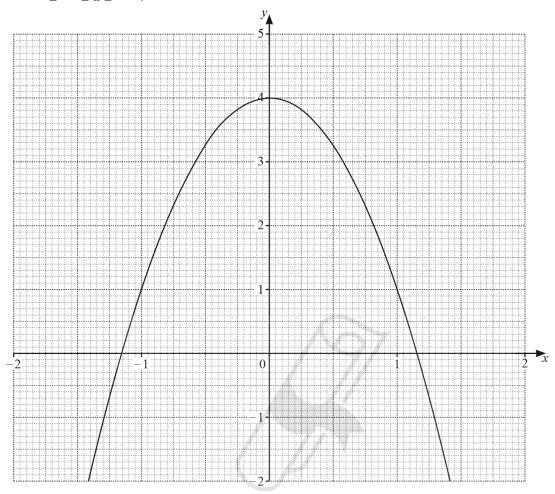
[2]

[4]

(b)	(i)	Find the derivative,	$\frac{\mathrm{d}y}{\mathrm{d}x}$, of	$y = 5 + 8x - \frac{4}{3}x^3.$
-----	-----	----------------------	--	--------------------------------

[2	!-

(ii) Find the gradient of $y = 5 + 8x - \frac{4}{3}x^3$ at x = -1.


(iii) A tangent is drawn to the graph of $y = 5 + 8x - \frac{4}{3}x^3$. The gradient of the tangent is -28.

Find the coordinates of the two possible points where this tangent meets the graph.

Paper Perfection, Crafted With Passion

55. $0580 _{\mathrm{m}21}_{\mathrm{qp}}_{\mathrm{42}}$ Q: 6

(a) The grid shows the graph of $y = a + bx^2$.

The graph passes through the points with coordinates (0, 4) and (1, 1).

(i) Find the value of a and the value of b.

$$b = \dots$$
 [2]

	(ii)	Write down the equation of the tangent to the graph at $(0, 4)$.					
			[1]				
	(iii)	The equation of the tangent to the graph at $x = -1$ is $y = 6x + 7$.					
		Find the equation of the tangent to the graph at $x = 1$.					
			[2]				
(b)	The	e table shows some values for $y = 1 + \frac{5}{3 - x}$ for $-2 \le x \le 1.5$.					

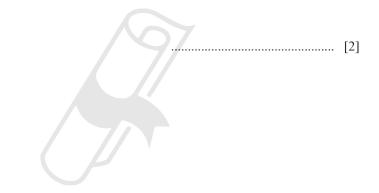
x	-2	-1.5	-1	-0.5	0	0.5	1	1.5
y	2	2.11		2.43		3		4.33

(i) Complete the table. [3] (ii) On the grid, draw the graph of $y = 1 + \frac{5}{3-x}$ for $-2 \le x \le 1.5$.

(ii) On the grid, draw the graph of y = 1 + 5/(3-x) for -2 ≤ x ≤ 1.5.
 (c) (i) Write down the values of x where the two graphs intersect.

$$x = \dots$$
 or $x = \dots$ [2]

(ii) The answers to part(c)(i) are two solutions of a cubic equation in terms of x. Find this equation in the form $ax^3 + bx^2 + cx + d = 0$, where a, b, c and d are integers.

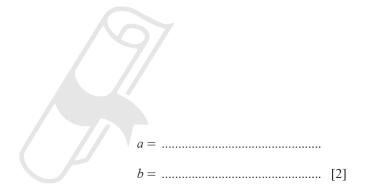

56. $0580 _{m21} _{qp} _{42}$ Q: 9

- (a) Factorise.
 - (i) 5am + 10ap bm 2bp

.....[2]

(ii) $15(k+g)^2 - 20(k+g)$

(iii) $4x^2 - y^4$



AcelGCSE [2]

(b) Expand and simplify. (x-3)(x+1)(3x-4)

(c) $(x+a)^2 = x^2 + 22x + b$

Find the value of a and the value of b.

AcelGCSE

57. $0580 _{m21} _{qp} _{42}$ Q: 11

Gaya spends \$48 to buy books that cost x each.

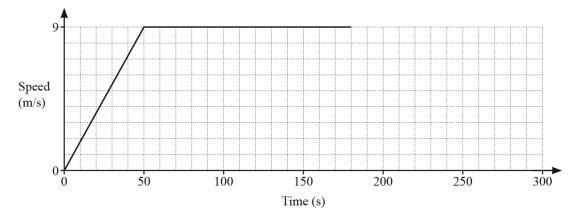
(a) Write down an expression, in terms of x, for the number of books Gaya buys.

.....[1]

(b) Myra spends \$60 to buy books that cost (x+2) each. Gaya buys 4 more books than Myra.

Show that $x^2 + 5x - 24 = 0$.

AcelGCSE


Paper Perfection, Crafted With Passion $x = \dots$ or $x = \dots$ [3]

(d) Find the number of books Myra buys.

.....[1]

 $58.\ 0580_s21_qp_41 \quad Q: 2$

The diagram shows the speed-time graph for the first 180 seconds of a train journey.

(a) Find the acceleration, in m/s^2 , of the train during the first 50 seconds.

..... m/s² [1]

(b) After 180 seconds, the train decelerates at a constant rate of 1944 km/h².

Show that the train decelerates for 60 seconds until it stops.

AcelGCSE [2]

(c) Complete the speed—time graph. [1]

Paper Perfection, Crafted With Passion (d) Calculate the average speed of the train for the whole journey.

..... m/s [4]

59. 0580_s21_qp_41 Q: 7

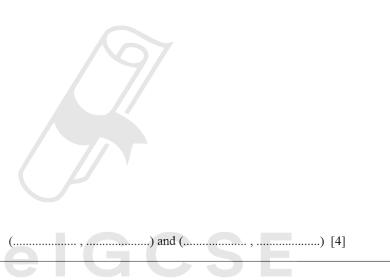
(a) Simplify.

$$\frac{x^2 - 25}{x^2 - x - 20}$$

.....[3]

(b) Write as a single fraction in its simplest form.

$$\frac{x+5}{x} + \frac{x+8}{x-1}$$



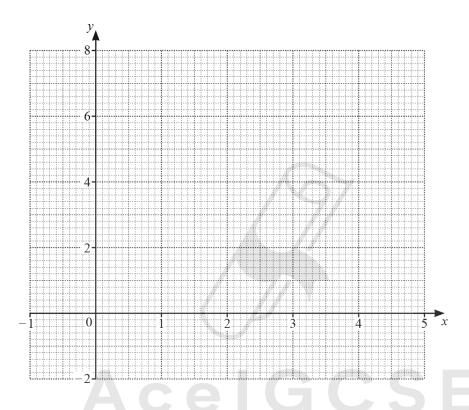
ACCIGOSE

(c)	A curve has equation $y = 2x^3 - 4x^2$				
	(i)	Find $\frac{dy}{dx}$, the derived function of y.			

				[2]
(ii)	Calculate the gradient of the curve	$y = 2x^3 - 4x^2 + 6$	at $x = 4$.	

(iii) Find the coordinates of the two stationary points on the curve.

60. $0580 _{s21} _{qp} _{41}$ Q: 10


The table shows some values of $y = 3 + 4x - x^2$ for $-1 \le x \le 5$.

x	-1	-0.5	0	1	2	3	4	4.5	5
у	-2			6		6			-2

(a) Complete the table.

[3]

(b) On the grid, draw the graph of $y = 3 + 4x - x^2$ for $-1 \le x \le 5$.

[4]

(c) Write down an integer value of k for which the equation $3+4x-x^2=k$ has no solutions.

F11

(d) By drawing a suitable straight line on the grid, solve the equation $-1 + \frac{9}{2}x - x^2 = 0$.

 $x = \dots$ or $x = \dots$ [4]

61. 0580 s21 qp 41 Q: 12 $f(x) = 3 - 2x \qquad g(x) = x^2 + 5 \qquad h(x) = x^3$

(a) Find f(-5).

.....[1]

(b) Find ff(x). Give your answer in its simplest form.

.....[2]

(c) Solve g(x) = f(x) + 37.

Paper Perfection, Crafted Mithorassion [4]

(d) Find $f^{-1}(x)$.

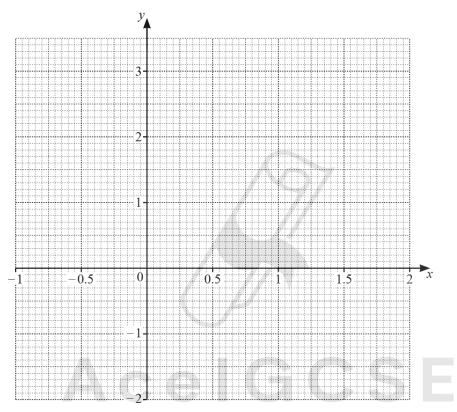
$$f^{-1}(x) = \dots$$
 [2]

(e) Find hf(x) + g(x). Give your answer in its simplest form.

.....[5]

AcelGCSE

62. $0580 _{s}21 _{q} _{p} _{4}2$ Q: 2


The table shows some values for $y = 2 \times 0.5^x - 1$.

x	-1	-0.5	0	0.5	1	1.5	2
у	3	1.83		0.41	0	-0.29	

(a) (i) Complete the table.

[2]

(ii) On the grid, draw the graph of $y = 2 \times 0.5^x - 1$ for $-1 \le x \le 2$.

Paner Perfection Crafted With Passion [4]

(b) By drawing a suitable straight line, solve the equation $2 \times 0.5^x + 2x - 3.5 = 0$ for $-1 \le x \le 2$.

$$x =$$
 [3]

(c) There are no solutions to the equation $2 \times 0.5^x - 1 = k$ where k is an integer.

Complete the following statements.

The highest possible value of *k* is

63. 0580	_s21_qp_42 Q: 3		
(a) Sin	aplify, giving your answer as a single power of 7.		
(i)	$7^5 \times 7^6$		
			[1]
(ii)	$7^{15} \div 7^5$		
(11)	, .,		
			[1]
(iii)	42 + 7		
()			F13
			[1]
(b) Sin	aplify. $(5x^2 \times 2xy^4)^3$		
	(cu viagy)		
			[2]
	5 -3		[3]
(c)	$P = 2^5 \times 3^3 \times 7 \qquad Q = 540$		
(i)	Find the highest common factor (HCF) of P and Q .		
			[2]
(::)	Find the lawest some and tight (LCM) of Road (O C E	[-]
(ii)	Find the lowest common multiple (LCM) of P and Q .		
	Paper Perfection, Crafte	d With Passion	
	raperrefrection, orarte	u with a assion	
			[2]
(iii)	$P \times R$ is a cube number, where R is an integer.		
(111)			
	Find the smallest possible value of R .		
			[2]

- (d) Factorise the following completely.
 - (i) $x^2 3x 28$

.....[2]

(ii) $7(a+2b)^2+4a(a+2b)$

.....[2]

(e) $3^{2x-1} = \frac{1}{9^x} \times 3^{2y-x}$

Find an expression for y in terms of x.

AcelGCSE [4]

64. $0580_s21_qp_42$ Q: 10

The table shows four sequences A, B, C and D.

Sequence	1st term	2nd term	3rd term	4th term	5th term	nth term
A	1	8	27	64		
В	5	11	17	23		
C	0.25	0.5	1	2	4	
D	4.75	10.5	16	21		

Complete the table.

[9]

AcelGCSE

65. 0580 s21 qp 43 Q: 2

$$y = px^2 + t$$

(i) Find the value of y when p = 3, x = 2 and t = -13.

$$y =$$
 [2]

(ii) Rearrange the formula to write x in terms of p, t and y.

$$x =$$
 [3]

(b) (i) Factorise. $15x^2 - 2x - 8$

.....[2]

(ii) Solve the equation.

Paper Perfection, Crafted. Withork €.s.s.i.o.n......[1]

(c) Factorise completely. $x^3 - 16xy^2$

.....[3]

(d) Simplify. $\underbrace{2x-1-4ax+2a}_{2x^2-x}$

.....[4]

66. $0580 _s21 _qp _43 \ Q: 5$

Solve the simultaneous equations.

(a)
$$x + 2y = 13$$

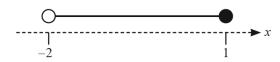
 $x + 5y = 22$

x =

$$y = \dots$$
 [2]

(b)
$$y = 2 - x$$

 $y = x^2 + 2x + 2$


AcelGCSE

$$x = \dots y = \dots$$

$$x = \dots y = \dots [4]$$

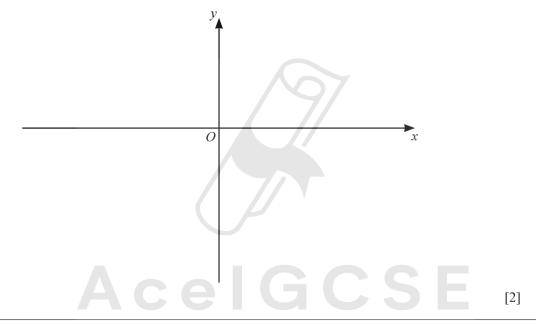
67. $0580 _{s}21 _{q} _{p} _{4}3$ Q: 7

(a)

Write down the inequality in *x* shown by the number line.

(b) (i) Write $x^2 + 4x + 1$ in the form $(x+p)^2 + q$.

(ii) Use your answer to part (b)(i) to solve the equation $x^2 + 4x + 1 = 0$.


AcelGCSE

$$x =$$
 [2]

(iii) Use your answer to **part** (b)(i) to write down the coordinates of the minimum point on the graph of $y = x^2 + 4x + 1$.

(.....) [2]

(iv) On the diagram, sketch the graph of $y = x^2 + 4x + 1$.

Paper Perfection, Crafted With Passion

68.	0580_	_s21_qp_43 Q:10				
		f(x) = 3x - 2	g(x) = 5x - 7	$h(x) = x^2 + x$	$j(x) = 3^x$	
(a)	Fine	1				
	(i)	f(2),				
						[1]
	(ii)	g(2),				
						[1]
	(iii)	gf(2).				[-]
	(111)	g1(2).				
						[1]
(b)	Fine	$1 f^{-1}(x).$				
				$f^{-1}(x) = .$		[2]
(c)	Fine	l hf(x), giving your a	enswer in the form			
(0)	1 1110	in (v), giving your				
				1		
					I Mills Danains	
				on, Grafte	d With Passion	[3]
(d)	Fino	the derivative of h	(x).			
						[1]
(e)	(i)	Find x when $j^{-1}(x)$	= 4.			
				x = .		[1]
	(ii)	Simplify $j^{-1}j(x)$.				
	(11)	Simplify $\int J(x)$.				[1]
						111

۷0	0500	a91	an	49	Q: 11
69.	บออบ	SZI	ab	4.5	W: II

(a) These are the first four terms of a sequence.

11 7 3 -1

(i) Write down the next term.

.....[1]

(ii) Write down the term to term rule for this sequence.

......[1]

(iii) Find the *n*th term of this sequence.

.....[2]

(b) The *n*th term of a different sequence is $\frac{2n}{n+1}$.

(i) Find the difference between the 5th term and the 6th term of this sequence. Give your answer as a fraction.

(ii) Is $\frac{3}{4}$ a term in this sequence? Show how you decide.

Paper Perfection, Crafted With Passion

[3]

70. 0580_m20_qp_42 Q: 5

(a) Write as a single fraction in its simplest form.

$$\frac{x+3}{x-3} - \frac{x-2}{x+2}$$

(b) $2^{12} \div 2^{\frac{k}{2}} = 32$

Find the value of k.

AcelGCSE

$$k = \dots$$
 [2]

(c) Expand and simplify. (y+3)(y-4)(2y-1)

.....[3]

(d) Make x the subject of the formula.

$$x = \frac{3+x}{y}$$

AcelGCSE

71.	0580	m20	αp	42	Q: 7
/ I.	0000	11120	чP	74	(A)

(a) Naga has n marbles.

Panav has three times as many marbles as Naga. Naga loses 5 marbles and Panav buys 10 marbles. Together they now have more than 105 marbles.

Write down and solve an inequality in n.

(b) y is inversely proportional to x^2 . When x = 4, y = 7.5.

Find y when x = 5.

$$y = \dots [3]$$

(c) Find the *n*th term of each sequence.

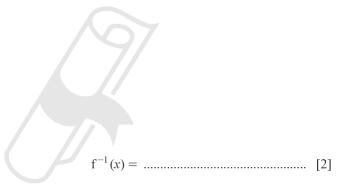
(i)

.....[2]

7 31 (ii) 1 17 49

.....[2]

72. 0580_m20_qp_42 Q: 10		
f(x) = 4x - 1	$g(x) = x^2$	$h(x) = 3^{-x}$


- (a) Find in its simplest form
 - (i) f(x-3),

(ii) g(5x).

(b) Find $f^{-1}(x)$.

(c) Find the value of hh(l), correct to 4 significant figures.

Paper Perfection, Crafted With Passion

(d) (i) Show that g(3x-2) - h(-3) can be written as $9x^2 - 12x - 23$.

[2]

(ii) Use the quadratic formula to solve $9x^2 - 12x - 23 = 0$. Give your answers correct to 2 decimal places.

x = or x = [4]

(e) Find x when f(61) = h(x).

AcelGCSE

Paper Perfection, Crafted With Passion

 $x = \dots$ [2]

73. $0580 \text{_m} 20 \text{_qp} \text{_42}$ Q: 11

A curve has equation $y = x^3 - 3x + 4$.

(a) Work out the coordinates of the two stationary points.

(,)	
()	[5]

(b) Determine whether each stationary point is a maximum or a minimum. Give reasons for your answers.

AcelGCSE

Paper Perfection, Crafted With Passion

[3]

74. $0580 _p20 _qp_40 Q: 7$

$$f(x) = 2x + 1$$

$$f(x) = 2x + 1$$
 $g(x) = x^2 + 4$ $h(x) = 2^x$

$$h(x) = 2^x$$

(a) Solve the equation f(x) = g(1).

$$x =$$
 [2]

(b) Find $f^{-1}(x)$.

$$f^{-1}(x) =$$
 [2]

(c) Find gf(x) in its simplest form.

(d) Solve the equation $h^{-1}(x) = 0.5$.

Paper Perfection, Craft
$$\frac{1}{2}$$
 With Passion [1]

$$(e) \quad \frac{1}{h(x)} = 2^{kx}$$

Write down the value of k.

$$k = \dots [1]$$

75. 0580_p20_qp_40 Q: 11

A curve has equation $y = x^3 - 6x^2 + 16$.

(a) Find the coordinates of the two turning points.

(b) Determine whether each of the turning points is a maximum or a minimum. Give reasons for your answers.

AcelGCSE

Paper Perfection, Crafted With Passion

[3]

76. $0580_s20_qp_41$ Q: 3

(a)
$$s = ut + \frac{1}{2}at^2$$

Find the value of s when u = 5.2, t = 7 and a = 1.6.

 $s = \dots$ [2]

(b) Simplify.

(i)
$$3a-5b-a+2b$$

(ii)
$$\frac{5}{3x} \times \frac{9x}{20}$$

(c) Solve.

(i)
$$\frac{15}{x} = -3$$

(ii) 4(5-3x) = 23Paper Perfection, Crafted With Passion

$$x = \dots$$
 [3]

(d) Simplify. $(27x^9)^{\frac{2}{3}}$

.....[2]

(e) Expand and simplify. (3x - 5y)(2x + y)

.....[2]

77.
$$0580_s20_qp_41$$
 Q: 6

Raheem makes baskets and mats.

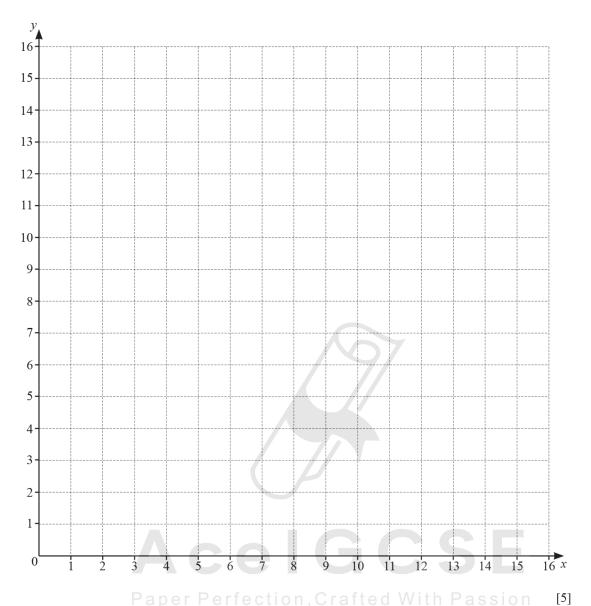
Each week he makes x baskets and y mats.

He makes fewer than 10 mats.

The number of mats he makes is greater than or equal to the number of baskets he makes.

(a) One of the inequalities that shows this information is y < 10.

Write down the other inequality.


(b) He takes $2\frac{1}{4}$ hours to make a basket and $1\frac{1}{2}$ hours to make a mat.

Each week he works for a maximum of 22.5 hours.

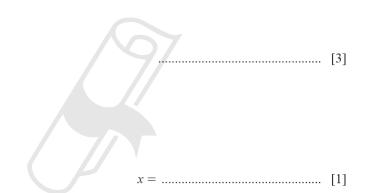
Show that $3x + 2y \le 30$.

[2]

(c) On the grid, draw three straight lines and shade the unwanted regions to show these inequalities.

(d) He makes \$40 profit on each basket he sells and \$28 profit on each mat he sells.

Calculate the maximum profit he can make each week.


\$ [2]

78. ($580_s20_qp_42$ Q: 6 $f(x) = 3x + 2$ $g(x) = x^2 + 1$ $h(x) = 4^x$	
(a)	Find h(4).	
(b)	[Find fg(1).	[1]
(c)	Find gf(x) in the form $ax^2 + bx + c$.	[2]
(d)	Find x when $f(x) = g(7)$.	[3]
	Paper Perfection, Crafted With Passion $x = \dots$	[2]
(e)	Find $f^{-1}(x)$.	
	$f^{-1}(x) = \dots$	[2]

(f) Find $\frac{g(x)}{f(x)} + x$.

Give your answer as a single fraction, in terms of x, in its simplest form.

(g) Find x when $h^{-1}(x) = 2$.

AcelGCSE

79. 0580_s20_qp_42 Q: 10

(a)
$$y = x^4 - 4x^3$$

(i) Find the value of y when x = -1.

$$y =$$
 [2]

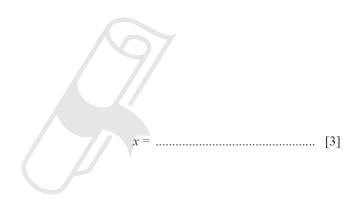
(ii) Find the two stationary points on the graph of $y = x^4 - 4x^3$.

(b) $y = x^p + 2x^q$ $\frac{dy}{dx} = 11x^{10} + 10x^4$, where $\frac{dy}{dx}$ is the derived function.

Find the value of p and the value of q.

p =	
q =	 [2]

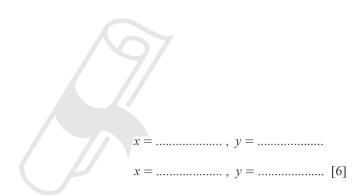
80. 0580_s20_qp_43 Q: 4


(a) Solve the inequality.

$$3m+12 \leq 8m-5$$

.....[2]

(b) Solve the equation.


$$\frac{2x+5}{3-x} = \frac{14}{15}$$

AcelGCSE

(c) Solve the simultaneous equations. You must show all your working.

$$y = 4 - x$$
$$x^2 + 2y^2 = 67$$

AcelGCSE

81. 0580_s20_qp_43 Q: 11

$$f(x) = 7x - 4$$

$$f(x) = 7x - 4$$
 $g(x) = \frac{2x}{x - 3}, x \neq 3$ $h(x) = x^2$

$$h(x) = x^2$$

(a) Find g(6).

 [1]	l
L -	1

(b) Find fg(4).

(c) Find fh(x).

(d) Find $\frac{f(x)}{2} + g(x)$.

Give your answer as a single fraction, in terms of x, in its simplest form.

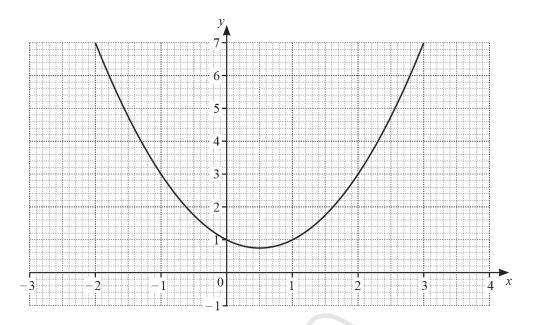
(e) Find the value of x when f(x+2) = -11.

$$x =$$
 [2]

(f) Find the values of p that satisfy h(p) = p.

AcelGCSE

82. $0580 _{s}20 _{q} _{p}_{4}3$ Q: 12

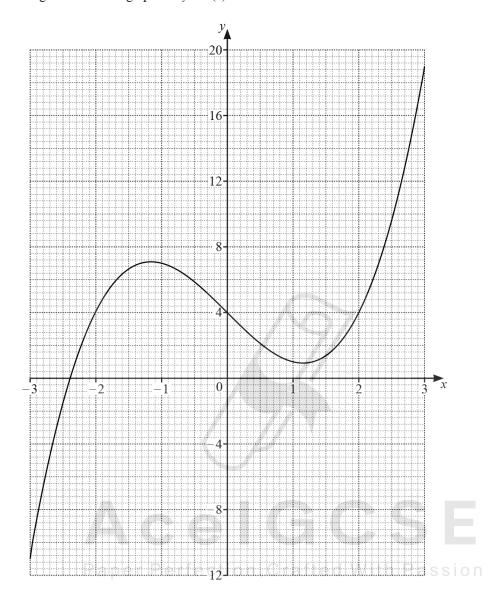

- (a) A curve has equation $y = 4x^3 3x + 3$.
 - (i) Find the coordinates of the two stationary points.

(......,, and (.....,) [5]

(ii) Determine whether each of the stationary points is a maximum or a minimum. Give reasons for your answers.

AcelGCSE

(b) The graph of $y = x^2 - x + 1$ is shown on the grid.


By drawing a suitable line on the grid, solve the equation $x^2 - 2x - 2 = 0$.

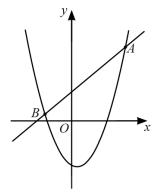
 $x = \dots$ or $x = \dots$ [3

AcelGCSE

83. 0580_w20_qp_41 Q: 5

(a) The diagram shows the graph of y = f(x) for $-3 \le x \le 3$.

(i) Solve f(x) = 14.


 $x = \dots$ [1]

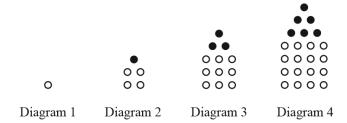
(ii) By drawing a suitable tangent, find an estimate of the gradient of the graph at the point (-2, 4).

(iii) By drawing a suitable straight line on the grid, solve f(x) = 2x - 2 for $-3 \le x \le 3$.

x = [3]

(b)

NOT TO SCALE


The diagram shows a curve with equation $y = 2x^2 - 2x - 7$. The straight line with equation y = 3x + 5 intersects the curve at the points A and B.

Find the coordinates of the points A and B.

AcelGCSE

A ((,)

84. 0580_w20_qp_41 Q: 7

These are the first four diagrams of a sequence.

The diagrams are made from white dots and black dots.

(a) Complete the table for Diagram 5 and Diagram 6.

Diagram	1	2	3	4	5	6
Number of white dots	1	4	9	16		
Number of black dots	0	1	3	6		
Total number of dots	1	5	12	22		

[2]

- (b) Write an expression, in terms of n, for the number of white dots in Diagram n.
 -[1]
- (c) The expression for the total number of dots in Diagram n is $\frac{1}{2}(3n^2 n)$.
 - (i) Find the total number of dots in Diagram 8.

(ii) Find an expression for the number of black dots in Diagram n. Give your answer in its simplest form.

.....[2]

(d) T is the total number of dots used to make all of the first n diagrams.

$$T = an^3 + bn^2$$

Find the value of *a* and the value of *b*. You must show all your working.

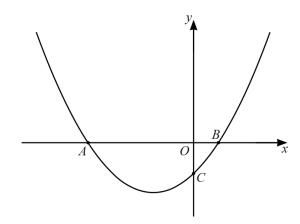
а	=	

$$b = \dots [5]$$

AcelGCSE

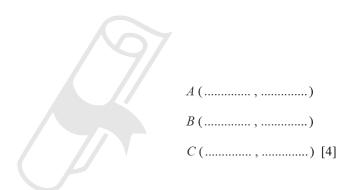
	0580_w20_qp_41 Q: Factorise completely.	$3a^2b-ab^2$	
(b)	Solve the inequality.	3x+12 < 5x-3	[2]
(c)	Simplify. $(3x^2)$		[2]
(d)	Solve. $\frac{2}{x} =$		[2]
(e)	Expand and simplify.	er $(x=2)(x+5)(2x-1)$ Crafted With Passion	[3]

- (f) Alan invests \$200 at a rate of r% per year compound interest. After 2 years the value of his investment is \$206.46 .
 - (i) Show that $r^2 + 200r 323 = 0$.


[3]

(ii) Solve the equation $r^2 + 200r - 323 = 0$ to find the rate of interest. Show all your working and give your answer correct to 2 decimal places.

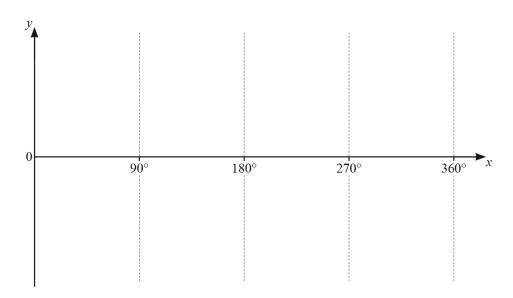
86. $0580 \text{_w} 20 \text{_qp} \text{_41}$ Q: 10


(a)

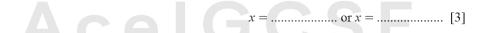
NOT TO SCALE

The diagram shows a sketch of the curve $y = x^2 + 3x - 4$.

(i) Find the coordinates of the points A, B and C.



(ii) Differentiate $x^2 + 3x - 4$.


			 	[2]

(iii) Find the equation of the tangent to the curve at the point (2, 6). Ith Passion

(b)

- (i) On the diagram, sketch the graph of $y = \tan x$ for $0^{\circ} \le x \le 360^{\circ}$. [2]
- (ii) Solve the equation $5 \tan x = -7$ for $0^{\circ} \le x \le 360^{\circ}$.

87.	$0580_w20_qp_42$ Q: 5
	amed sells different types of cake in his shop.
	e cost of each cake depends on its type and its size.
Ev	ery small cake costs x and every large cake costs $(2x + 1)$.
(a)	The total cost of 3 small lemon cakes and 2 large lemon cakes is \$12.36.
	Find the cost of a small lemon cake.
	\$ [3]
(b)	The cost of 18 small chocolate cakes is the same as the cost of 7 large chocolate cakes.
	Find the cost of a small chocolate cake.
	\$ [3]
(c)	The number of small cherry cakes that can be bought for \$4 is the same as the number of large cherry cakes that can be bought for \$13.
	Find the cost of a small cherry cake.
	Paper Perfection, Crafted With Passion

\$[3]

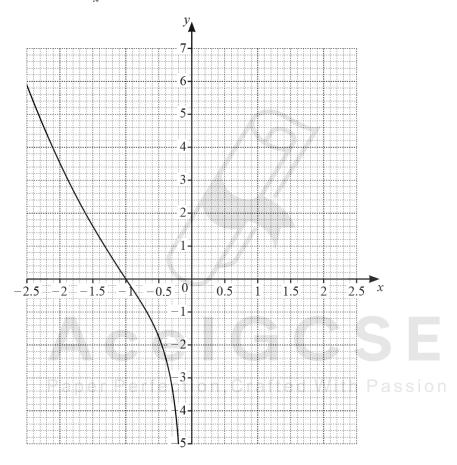
\$[7]

(d) Petra spends \$20 on small coffee cakes and \$10 on large coffee cakes. The total number of cakes is 45.

Write an equation in terms of x. Solve this equation to find the cost of a small coffee cake. Show all your working.

Powered by AcelGCSE

88.
$$0580 \text{_w} 20 \text{_qp} \text{_42}$$
 Q: 7


$$y = x^2 + \frac{1}{x}, \ x \neq 0$$

(a) Complete the table.

x	0.2	0.3	0.5	1	1.5	2	2.5
у	5.0	3.4	2.3		2.9		6.7

[2]

(b) On the grid, draw the graph of $y = x^2 + \frac{1}{x}$ for $0.2 \le x \le 2.5$. The graph of $y = x^2 + \frac{1}{x}$ for $-2.5 \le x \le -0.2$ has been drawn for you.

[4]

- (c) By drawing suitable straight lines on the grid, solve the following equations.
 - (i) $x^2 + \frac{1}{x} = -2$

$$x = \dots$$
 [1]

(ii)
$$x^2 + \frac{1}{x} + x - 1 = 0$$

$$x =$$
 [2]

(d) k is an integer and the equation $x^2 + \frac{1}{x} = k$ has three solutions.

Write down a possible value of k.

$$k = \dots$$
 [1]

AcelGCSE

89. 0580_w20_qp_42	Q: 10	
$f(x) = x^2 + 1$	g(x) = 1 - 2x	h

$$j(x) = \frac{1}{x}, \ x \neq 0$$
 $j(x) = 5^x$

- (a) Find the value of
 - **(i)** f(3),

.....[1]

(ii) gf(3).

.....[1]

(b) Find $g^{-1}(x)$.

 $g^{-1}(x) = \dots [2]$

(c) Find x when h(x) = 2.

x = [1]

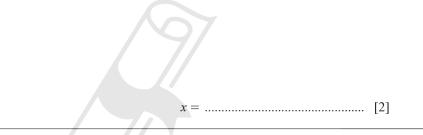
(d) Find g(x)g(x) - gg(x), giving your answer in the form $ax^2 + bx + c$.

Panor Portoction Crafted With Passion

.....[4]

(e) Find hh(x), giving your answer in its simplest form.

|--|


(f) Find j(5).

(g) Find x when $j^{-1}(x) = 2$.

$$x = \dots$$
 [1]

(h) j(x) = hg(-12)

Find the value of x.

AcelGCSE

90. $0580 \text{_w} 20 \text{_qp} \text{_42} \quad Q: 11$

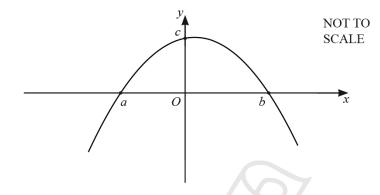
Sequence	1st term	2nd term	3rd term	4th term	5th term	nth term
A	13	9	5	1		
В	0	7	26	63		
С	7 /8	<u>8</u> 16	9/32	10 64		

(a) Complete the table for the three sequences.

Γ	1	01

(b) One term in Sequence C is $\frac{p}{q}$.

Write down the next term in Sequence C in terms of p and q.


 [2]

AcelGCSE

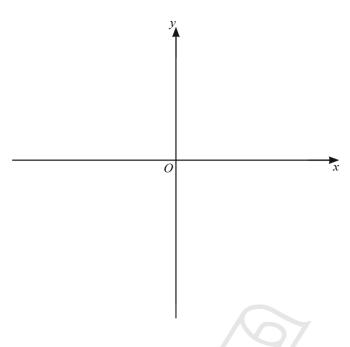
- 91. 0580_w20_qp_43 Q: 7
- (a) (i) Factorise $24 + 5x x^2$.

 [2]

(ii) The diagram shows a sketch of $y = 24 + 5x - x^2$.

Work out the values of a, b and c.

 $a = \dots$


b =

c = [3]

(iii) Calculate the gradient of $y = 24 + 5x - x^2$ at x = -1.5.

Paper Perfection, Crafted With Passion

(b) (i) On the diagram, sketch the graph of $y = (x+1)(x-3)^2$. Label the values where the graph meets the *x*-axis and the *y*-axis.

(ii) Write $(x+1)(x-3)^2$ in the form $ax^3 + bx^2 + cx + d$.

AcelGCSE

Paper Perfection, Crafted With Passion

[4]

92. 0580_w20_qp_43 Q: 9

(a) Find the integer values that satisfy the inequality $2 < 2x \le 10$.

.....[2]

- (b) Factorise completely.
 - (i) $6y^2 15xy$

(ii) $y^2 - 9x^2$

(c) Simplify.

$$\frac{3}{x-1} - \frac{2}{2x+1}$$

AcelGCSE

Paper Perfection, Crafted With Passion

(d)	The straight line	y = 3x + 2	intersects the curve	$y = 2x^2 + 7x - 11$	at two points
	Find the coordina Give your answer				

()
() [6]
ACCIGOSE

93. $0580_{\text{w}}20_{\text{qp}}43$ Q: 10 $f(x) = 4-3x g(x) = x^2 + x h(x) = 3^x$

(a) Find fh(2).

.....[2]

(b) Find $f^{-1}(x)$.

 $f^{-1}(x) = \dots [2]$

- (c) Simplify.
 - (i) f(1-2x)

AcelGCSE

Paper Perfection, Crafted With Passion

.....[4]

(d) $\frac{1}{h(x)} = 9^{kx}$ Find the value of k.

 $k = \dots [2]$

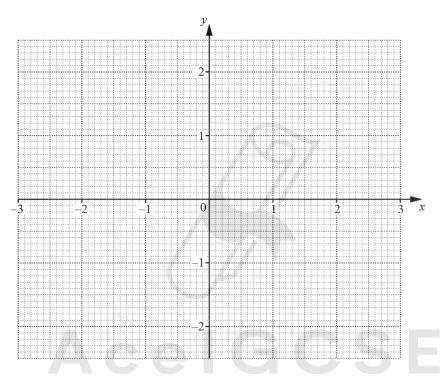
94. $0580 \text{_w} 20 \text{_qp} \text{_43}$ Q: 11

The table shows the first four terms in sequences A, B, and C.

Sequence	1st term	2nd term	3rd term	4th term	5th term	<i>n</i> th term
A	4	9	14	19		
В	3	10	29	66		
C	1	4	16	64		

Complete the table.

[9]


AcelGCSE

95. $0580 _{m19} _{qp} _{42}$ Q: 5

The table shows some values for $y = \frac{3}{10}x^3 - 2x$ for $-3 \le x \le 3$.

x	-3	-2	-1.5	-1	0	1	1.5	2	3
У			2.0	1.7	0		-2.0	-1.6	

(b) On the grid, draw the graph of $y = \frac{3}{10}x^3 - 2x$ for $-3 \le x \le 3$.

[4]

Paper Perfection, Crafted With Passion (c) On the grid opposite, draw a suitable straight line to solve the equation $\frac{3}{10}x^3 - 2x = \frac{1}{2}(1-x)$

 $x = \dots$ or $x = \dots$ [4]

(d) For $-3 \le x \le 3$, the equation $\frac{3}{10}x^3 - 2x = 1$ has *n* solutions.

Write down the value of n.

96. $0580_{m19_{qp}_42}$ Q: 8

$$f(x) = \frac{3}{x+2}, x \neq -2$$
 $g(x) = 8x-5$ $h(x) = x^2 + 6$

$$g(x) = 8x - 5$$

$$h(x) = x^2 + 6$$

(a) Work out $g(\frac{1}{4})$.

Г1	1
 L	٠.

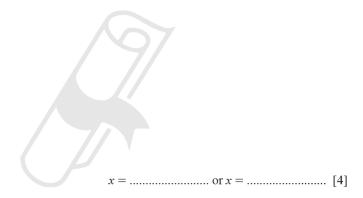
(b) Work out ff(2).

(c) Find gg(x), giving your answer in its simplest form.

(d) Find $g^{-1}(x)$.

$$g^{-1}(x) = \dots$$
 [2]

(e) Write g(x) - f(x) as a single fraction in its simplest form.

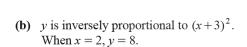

Paper Perfection, Crafted With Passion

......[3]

(f) (i) Show that hg(x) = 19 simplifies to $16x^2 - 20x + 3 = 0$.

[3]

(ii) Use the quadratic formula to solve $16x^2 - 20x + 3 = 0$. Show all your working and give your answers correct to 2 decimal places.



AcelGCSE

97. $0580 _{m19} _{qp} _{42}$ Q: 10

(a) Solve the simultaneous equations. You must show all your working.

$$6x + 5y = 27$$
$$5x - 3y = 44$$

Find y when x = 7.

AcelGCSE

Paper Perfection, Crafted With Passion

$$y =$$
 [3]

(c) Solve the inequality.

$$3(x-2) < 7(x+2)$$

.....[3]

[2]

98. $0580 \text{_m} 19 \text{_qp} \text{_42}$ Q: 11

(a) The table shows the first five terms of sequence A and sequence B.

Term	1	2	3	4	5	6
Sequence A	7	13	23	37	55	
Sequence B	1	3	9	27	81	

(i)	Complete the table for the 6th term of each sequence.	
-----	---	--

- (ii) Find the *n*th term of
 - (a) sequence A,

(b) The *n*th term of another sequence is $4n^2 + n + 3$.

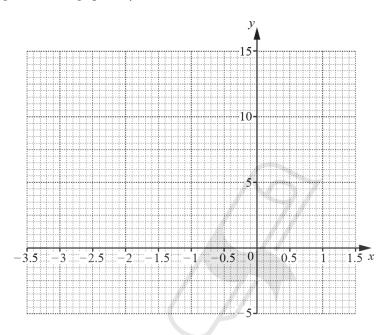
Find

(i) the 2nd term,

Paper Perfection, Crafted With Passion

 [1]
F - 1

(ii) the value of n when the nth term is 498.


$$n =$$
 [3]

99. $0580 _s19 _qp_41 Q: 2$

The table shows some values for $y = x^3 + 3x^2 + 2$.

x	-3.5	-3	-2.5	-2	-1.5	-1	-0.5	0	0.5	1	1.5
y	-4.1		5.1	6	5.4	4	2.6		2.9		12.1

(b) On the grid, draw the graph of $y = x^3 + 3x^2 + 2$ for $-3.5 \le x \le 1.5$.

[4]

(c) Use your graph to solve the equation $x^3 + 3x^2 + 2 = 0$ for $-3.5 \le x \le 1.5$.

$$x = \dots$$
 [1]

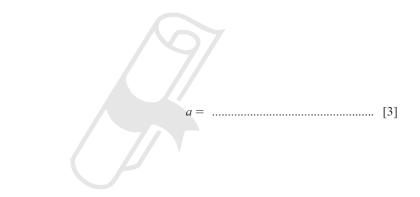
(d) By drawing a suitable straight line, solve the equation $x^3 + 3x^2 + 2x + 2 = 0$ for $-3.5 \le x \le 1.5$.

$$x = \dots$$
 [2]

(e) For $-3.5 \le x \le 1.5$, the equation $x^3 + 3x^2 + 2 = k$ has three solutions and k is an integer.

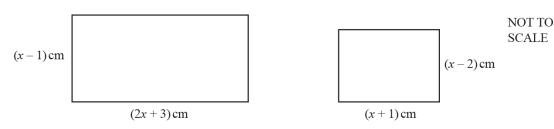
Write down a possible value of k.

$$k = \dots$$
 [1]


100. $0580 _s19 _qp _41 \quad Q: 7$

$$(a) s = ut + \frac{1}{2}at^2$$

(i) Find s when t = 26.5, u = 104.3 and a = -2.2. Give your answer in standard form, correct to 4 significant figures.


$$s = \dots$$
 [4]

(ii) Rearrange the formula to write a in terms of u, t and s.

AcelGCSE

(b)

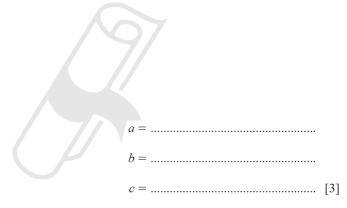
The difference between the areas of the two rectangles is 62 cm².

(i) Show that $x^2 + 2x - 63 = 0$.

(iii) Solve the equation $x^2 + 2x - 63 = 0$ to find the difference between the perimeters of the two rectangles.

	. cm	[2

101. 0580_s19_qp_41	Q: 9	
f(x) = 7x - 2	$g(x) = x^2 + 1$	$h(x) = 3^x$


(a) Find gh(2).

.....[2]

(b) Find $f^{-1}(x)$.

 $f^{-1}(x) = \dots$ [2]

(c) $gg(x) = ax^4 + bx^2 + c$ Find the values of a, b and c.

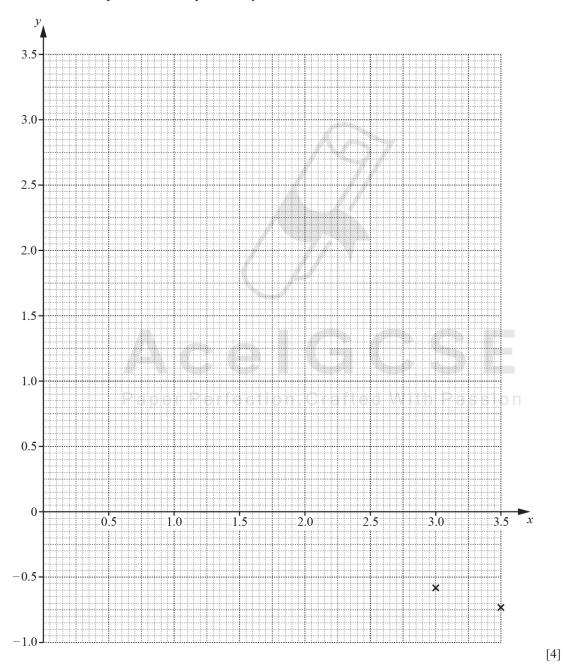
(d) Find x when hf(x) = 81.

Paper Perfection, Crafted With Passion

x = [3]

102. 0580_s19_qp_42 Q: 5

The table shows some values of $y = \frac{1}{2x} - \frac{x}{4}$ for $0.15 \le x \le 3.5$.


x	0.15	0.2	0.5	1	1.5	2	2.5	3	3.5
у	3.30		0.88		-0.04		-0.43	-0.58	-0.73

(a) Complete the table.

[3]

(b) On the grid, draw the graph of $y = \frac{1}{2x} - \frac{x}{4}$ for $0.15 \le x \le 3.5$.

The last two points have been plotted for you.

(c) Use your graph to solve the equation $\frac{1}{2x} - \frac{x}{4} = \frac{1}{2}$ for $0.15 \le x \le 3.5$.

(d) (i) On the grid, draw the line y = 2 - x.

(ii) Write down the x co-ordinates of the points where the line y=2-x crosses the graph of $y=\frac{1}{2x}-\frac{x}{4}$ for $0.15 \le x \le 3.5$.

$$x =$$
 and $x =$ [2]

(e) Show that the graph of $y = \frac{1}{2x} - \frac{x}{4}$ can be used to find the value of $\sqrt{2}$ for $0.15 \le x \le 3.5$.

AcelGCSE

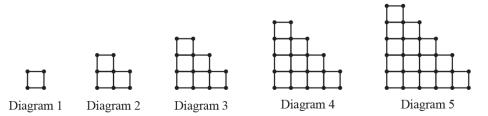
103. 0580_s19_qp_42 Q: 6

(a) Expand and simplify.

$$(x+7)(x-3)$$

.....[2]

- **(b)** Factorise completely.
 - (i) $15p^2q^2 25q^3$
 - (ii) 4fg + 6gh + 10fk + 15hk
 -[2


Paper Perfection, Crafted With Passion [2]

(c) Solve the equation.

(iii) $81k^2 - m^2$

$$3(x-4) + \frac{x+2}{5} = 6$$

104. 0580_s19_qp_42 Q: 11

The sequence of diagrams above is made up of small lines and dots.

(a) Complete the table.

	Diagram 1	Diagram 2	Diagram 3	Diagram 4	Diagram 5	Diagram 6
Number of small lines	4	10	18	28		
Number of dots	4	8	13	19		

[4]

(b) For Diagram n find an expression, in terms of n, for the number of small lines.

.....[2]

(c) Diagram r has 10 300 small lines.

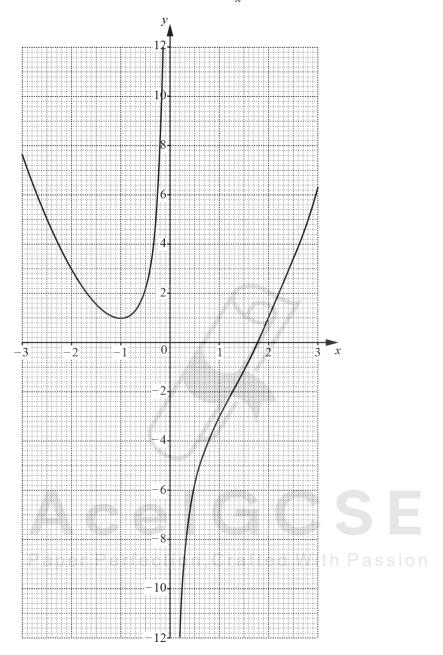
Find the value of r.

cerdcse

Paper Perfection, Crafted With Passion

 $r = \dots$ [2]

(d)	The number of dots in Diagram n is	$an^2 + bn + 1$.
	Find the value of a and the value of b	


$$a = \dots$$
 $b = \dots$ [2]

AcelGCSE

105. 0580_s19_qp_43 Q: 2	
(a) Solve. $5x - 17 = 7x + 3$	
3x-1/=/x+3	
	x = [2]
(b) Find the integer values of <i>n</i> that satisfy this inequality.	
$-7 < 4n \leqslant 8$	
	[3]
(c) Simplify.	
(i) $a^3 \times a^6$	
	[1]
(ii) $(5xy^2)^3$	
	[2]
$(27x^{12})^{-\frac{1}{3}}$	
(iii) $\left(\frac{27x^{12}}{64y^3}\right)^{-\frac{1}{3}}$	
Paper Perfection, Craft	ted With Passion
	[3]

106. 0580_s19_qp_43 Q: 5

The diagram shows the graph of y = f(x) where $f(x) = x^2 - \frac{2}{x} - 2$, $x \ne 0$.

(a)	Use	the graph to find	
	(i)	f(1),	
	(ii)	ff(-2).	[1]
(b)		the grid opposite, draw a suitable straight line to solve the equation $-\frac{2}{x} - 7 = -3x \text{for } -3 \le x \le 3.$	[2]
(c)	Ву	x =	[4]
(d)	(i)	Complete the table for $y = g(x)$ where $g(x) = 2^{-x}$ for $-3 \le x \le 3$.	[3]
		x -3 -2 -1 0 1 2 3 y A C 2 1 0.5 0.125 Paper Perfection, Crafted With Passion	[3]
	(ii)		[3]
	(iii)	Use your graph to find the positive solution to the equation $f(x) = g(x)$.	
		<i>x</i> =	[1]

107.	0580	_s19_	qp_43	Q: 10							
(a)					19,	15,	11,	7,			
	(i)	Write	lown the	e next two	terms of t	he seque	ence.				
	(ii)	Find th	ne nth te	rm of this	sequence.				 	,	 [2]
((iii)	Find th	e value	of <i>n</i> when	the <i>n</i> th te	rm is –6	5.		 		 [2]
(b)				as <i>n</i> th tern between th			5th term	n of this			 [2]

108. 0580 w 19 qp 41 Q: 7

(a) Oranges cost 21 cents each. Alex buys x oranges and Bobbie buys (x+2) oranges. The total cost of these oranges is \$4.20.

Find the value of x.

 $x = \dots$ [3]

(b) The cost of one ruler is r cents.

The cost of one protractor is p cents.

The total cost of 5 rulers and 1 protractor is 245 cents.

The total cost of 2 rulers and 3 protractors is 215 cents.

Write down two equations in terms of r and p and solve these equations to find the cost of one protractor.

AcelGCSE

Paper Perfection, Crafted With Passion

..... cents [5]

- (c) Carol walks 12 km at x km/h and then a further 6 km at (x-1) km/h. The total time taken is 5 hours.
 - (i) Write an equation, in terms of x, and show that it simplifies to $5x^2 23x + 12 = 0$.

(ii) Factorise $5x^2 - 23x + 12$.

.....[2]

[3]

- (iii) Solve the equation $5x^2 23x + 12 = 0$.
 - $x = \dots \text{ or } x = \dots$ [1]
- (iv) Write down Carol's walking speed during the final 6 km.

Paper Perfection, Crafted With Passion

..... km/h [1]

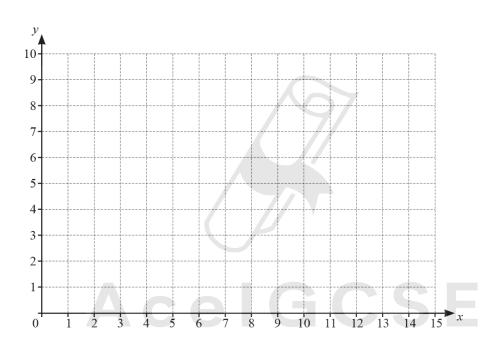
109. 0580 w19 qp 41 Q: 9

A car hire company has x small cars and y large cars.

The company has at least 6 cars in total.

The number of large cars is less than or equal to the number of small cars.

The largest number of small cars is 8.


(a) Write down three inequalities, in terms of x and/or y, to show this information.

(b) A small car can carry 4 people and a large car can carry 6 people. One day, the largest number of people to be carried is 60.

Show that $2x + 3y \le 30$.

[1]

(c)

By shading the **unwanted** regions on the grid, show and label the region R that satisfies all four inequalities. [6]

(d) (i) Find the number of small cars and the number of large cars needed to carry exactly 60 people.

...... small cars, large cars [1]

(ii) When the company uses 7 cars, find the largest number of people that can be carried.

.....[2]

110. 0580 w 19 qp 41 Q: 10

(a) Complete the table for the 5th term and the *n*th term of each sequence.

1st term	2nd term	3rd term	4th term	5th term	nth term
9	5	1	-3		
4	9	16	25		
1	8	27	64		
8	16	32	64		

[11]

(b) 0, 1, 1, 2, 3, 5, 8, 13, 21, ...

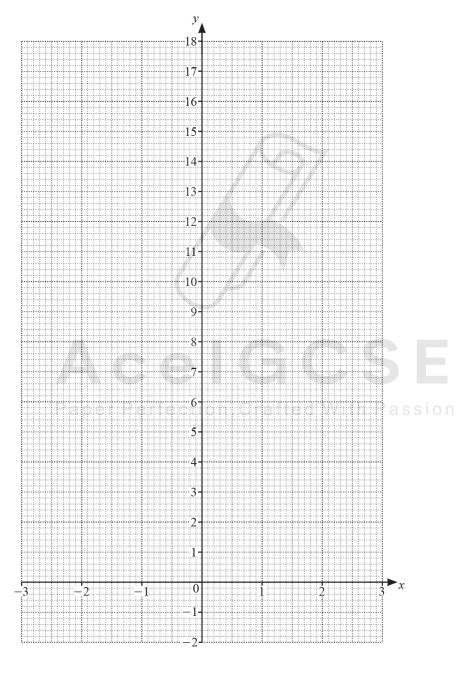
This sequence is a Fibonacci sequence.

After the first two terms, the rule to find the next term is "add the two previous terms". For example, 5+8=13.

Use this rule to complete each of the following Fibonacci sequences.

- (c) $\frac{1}{3}$, $\frac{3}{4}$, $\frac{4}{7}$, $\frac{7}{11}$, $\frac{11}{18}$, ...
 - (i) One term of this sequence is $\frac{p}{q}$.

Find, in terms of p and q, the next term in this sequence.


 $111.\ 0580_w19_qp_42 \quad Q:5$

The table shows some values of $y = \frac{x^2}{2} + \frac{1}{x^2} - \frac{2}{x}, \ x \neq 0.$

x	-3	-2	-1	-0.5	-0.3	0.2	0.3	0.5	1	2	3
у	5.3	3.3		8.1	17.8		4.5	0.1	-0.5	1.3	

(a) Complete the table. [3]

(b) On the grid, draw the graph of $y = \frac{x^2}{2} + \frac{1}{x^2} - \frac{2}{x}$ for $-3 \le x \le -0.3$ and $0.2 \le x \le 3$.

[5]

(c) Use your graph to solve $\frac{x^2}{2} + \frac{1}{x^2} - \frac{2}{x} \le 0$.

.....
$$\leq x \leq$$
 [2]

(d) Find the smallest positive integer value of k for which $\frac{x^2}{2} + \frac{1}{x^2} - \frac{2}{x} = k$ has two solutions for $-3 \le x \le -0.3$ and $0.2 \le x \le 3$.

(e) (i) By drawing a suitable straight line, solve $\frac{x^2}{2} + \frac{1}{x^2} - \frac{2}{x} = 3x + 1$ for $-3 \le x \le -0.3$ and $0.2 \le x \le 3$.

$$x =$$
 [3]

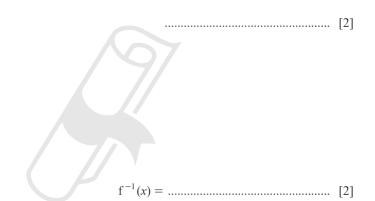
(ii) The equation $\frac{x^2}{2} + \frac{1}{x^2} - \frac{2}{x} = 3x + 1$ can be written as $x^4 + ax^3 + bx^2 + cx + 2 = 0$. Find the values of a, b and c.

112. $0580 _{\mathrm{w}}19_{\mathrm{qp}}_{\mathrm{42}}$ Q: 7

$$f(x) = 7 - 2x$$

$$f(x) = 7 - 2x$$
 $g(x) = \frac{10}{x}, x \neq 0$ $h(x) = 27^x$

$$h(x) = 27^x$$


(a) Find

(i)
$$f(-3)$$
,

.....[1]

(ii) hg(30),

(iii) $f^{-1}(x)$.

(b) Solve.

$$g(2x+1)=4$$

(c) Simplify, giving your answer as a single fraction.

$$\frac{1}{f(x)} + g(x)$$

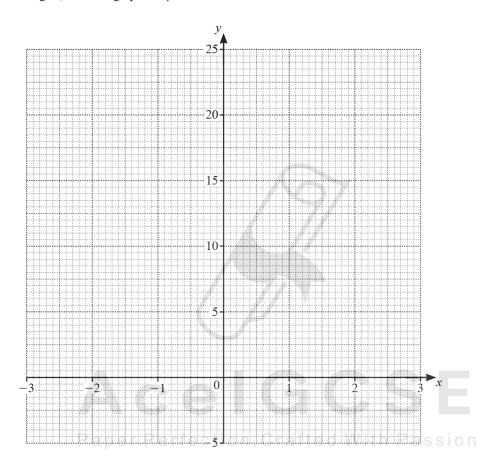
.....[3]

(d) Find $h^{-1}(19683)$.

.....[1]

AcelGCSE

113. $0580 w19 qp_43$ Q: 3


The table shows some values for $y = x^3 + x^2 - 5x$.

x	-3	-2	-1.5	-1	0	1	1.5	2	2.5	3
у	-3	6	6.4		0		-1.9	2	9.4	

(a) Complete the table.

[3]

(b) On the grid, draw the graph of $y = x^3 + x^2 - 5x$ for $-3 \le x \le 3$.

[4]

	TT 1 1 1 1 1'	3 . 2 . 5
(c)	Use your graph to solve the equation	x + x - 5x = 0.

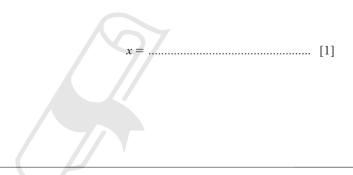
$$x = \dots$$
 or $x = \dots$ [2]

(d) By drawing a suitable tangent, find an estimate of the gradient of the curve at x = 2.

(e) Write down the largest value of the integer, k, so that the equation $x^3 + x^2 - 5x = k$ has three solutions for $-3 \le x \le 3$.

$$k = \dots$$
 [1]

AcelGCSE

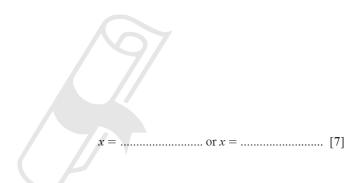

	0580 Find	f(x	p_43 Q: 9 $p_3 = 2x - 3$	$g(x) = 9 - x^2$	$h(x) = 3^x$	
	(i)	f(4),				
	(ii)	hg(3),				[1]
	(iii)	g(2x) in	its simplest form,			[2]
	(iv)		its simplest form.			[1]
(b)	Find	$1 f^{-1}(x).$		elG fection,Craft	CSE red With Passion	[2]
(c)	Find	1x when	5f(x) = 3.	f ⁻¹ ($f(x) = \dots$	[2]

x =.....[2]

(d) Solve the equation gf(x) = -16.

$$x = \dots$$
 or $x = \dots$ [4]

(e) Find x when $h^{-1}(x) = -2$.


AcelGCSE

 $115.\ 0580_w19_qp_43 \quad Q:10$

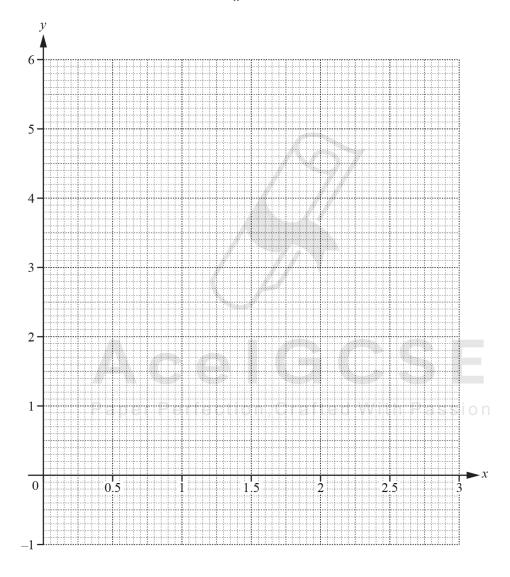
Solve.

$$\frac{1}{x} - \frac{2}{x+1} = 3$$

Show all your working and give your answers correct to 2 decimal places.

AcelGCSE

116. $0580 _{m}18_{qp}42 Q: 3$


The table shows some values for $y = 2x + \frac{1}{x} - 3$ for $0.125 \le x \le 3$.

х	0.125	0.25	0.375	0.5	0.75	1	1.5	2	2.5	3
у	5.25	1.5	0.42			0	0.67	1.5		3.33

(a) Complete the table.

[3]

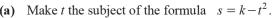
(b) On the grid, draw the graph of $y = 2x + \frac{1}{x} - 3$ for $0.125 \le x \le 3$.

[4]

(c) Use your graph to solve $2x + \frac{1}{x} - 3 \ge 2$.

.....r

- (d) The equation $\frac{1}{x} = 7 3x$ can be solved using your graph in **part** (b) and a straight line.
 - (i) Write down the equation of this straight line.


.....[2]

(ii) Draw this straight line and solve the equation $\frac{1}{x} = 7 - 3x$.

 $x = \dots$ or $x = \dots$ [3]

AcelGCSE

117.	$0580_$	$_{ m m}18$	$_{ m qp}$	$_{2}42$	Q:	4
(a)	Mak	e t the	sub	iect	of t	h

(b) (i) Factorise $x^2 - 25$.

(ii) Simplify $\frac{x^2 - 25}{x^2 - 2x - 35}$.

(c) Write as a single fraction in its simplest form.

$$\frac{x-8}{x} + \frac{3x}{x+1}$$

Paper Perfection, Crafted With Passion (d) Find the integer values of n that satisfy the inequality.

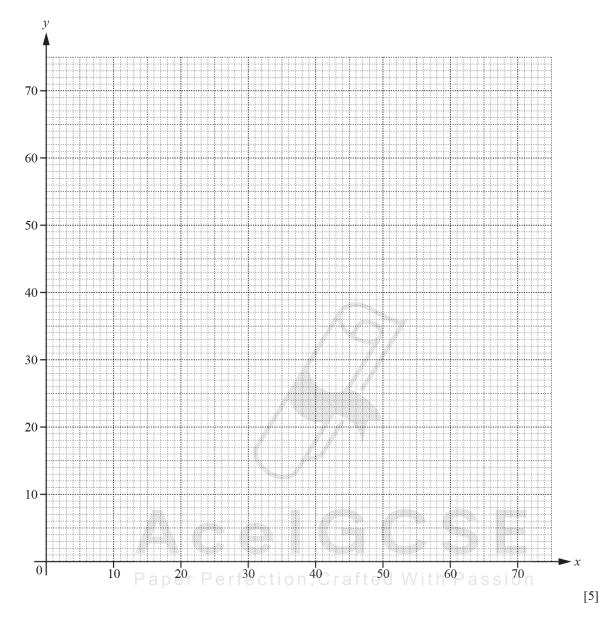
$$18 - 2n < 6n \leqslant 30 + n$$

.....[3]

118. $0580 _{m}18_{qp}_{4}$ Q: 6

Klaus buys x silver balloons and y gold balloons for a party.

He buys


- more gold balloons than silver balloons
- at least 15 silver balloons
- less than 50 gold balloons
- a total of no more than 70 balloons.
- (a) Write down four inequalities, in terms of x and/or y, to show this information.

														•			• •				• •				
															 							[·	4	.]	

Powered by AcelGCSE

(b) On the grid, show the information from part (a) by drawing four straight lines and shading the unwanted regions.

(c) Silver balloons cost \$2 and gold balloons cost \$3.

Calculate the most that Klaus could spend.

\$ [2]

119. 0580_m18_qp_42 Q: 11 The table shows the first five terms of sequences A, B and C.

Sequence	1st term	2nd term	3rd term	4th term	5th term	6th term
A	0	1	4	9	16	
В	4	5	6	7	8	
С	-4	-4	-2	2	8	

(a)	Con	nplete the table.	[3]
(b)	Find	an expression for the <i>n</i> th term of	
	(i)	sequence A ,	
	(ii)	sequence B.	
(c)	Find	If the value of n when the n th term of sequence A is 576.	
(d)	(i)	Find an expression for the n th term of sequence C . Give your answer in its simplest form. Paper Perfection, Crafted With Passion	[2]
	(ii)	Find the value of the 30th term of sequence C .	[3]
			[2]

120. $0580_s18_qp_41$ Q: 5

(a) Factorise.

(i)
$$2mn + m^2 - 6n - 3m$$

.....[2]

(ii) $4y^2 - 81$

.....[1]

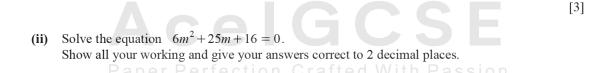
(iii) $t^2 - 6t + 8$

.....[2]

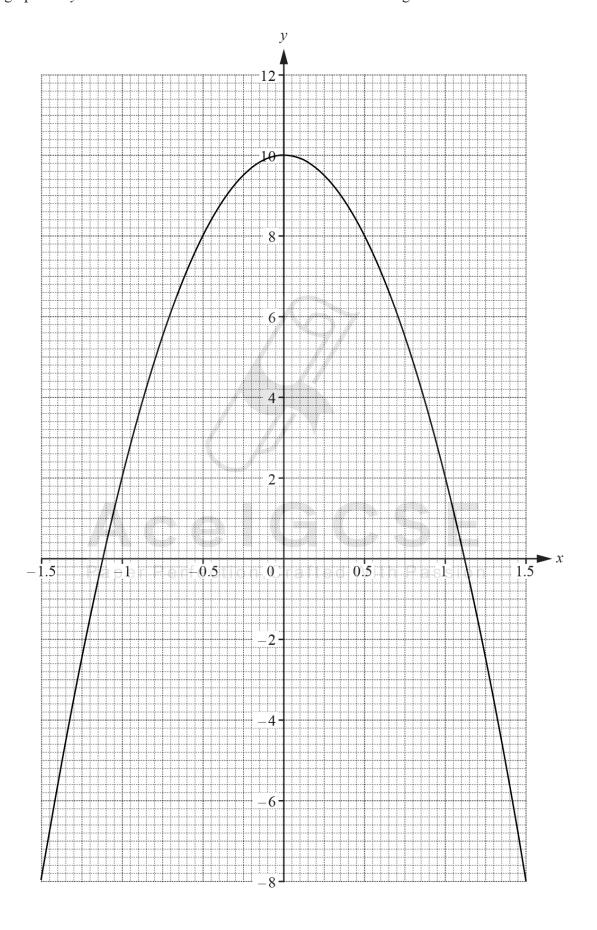

(b) Rearrange the formula to make x the subject.

$$k = \frac{2m - x}{x}$$

AcelGCSE


(c) Solve the simultaneous equations. You must show all your working.

$$\begin{aligned}
\frac{1}{2}x - 3y &= 9\\ 5x + y &= 28
\end{aligned}$$


(d)
$$\frac{3}{m+4} - \frac{4}{m} = 6$$

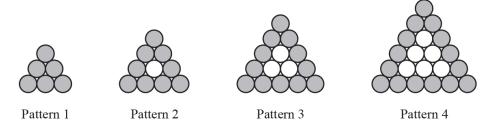
(i) Show that this equation can be written as $6m^2 + 25m + 16 = 0$.

$$m = \dots$$
 or $m = \dots$ [4]

121. $0580_s18_qp_41$ Q: 7 The graph of $y = 10 - 8x^2$ for $-1.5 \le x \le 1.5$ is drawn on the grid.

(a)	Write down the equation of the line of symmetry of the graph.	
		[1]
		[1]

(b) On the grid opposite, draw the tangent to the curve at the point where x = 0.5. Find the gradient of this tangent.


(c) The table shows some values for $y = x^3 + 3x + 4$.

х	-1.5	-1	-0.5	0	0.5	1	1.5
У	-3.9				5.6	8	11.9

- (i) Complete the table. [3]
- (ii) On the grid opposite, draw the graph of $y = x^3 + 3x + 4$ for $-1.5 \le x \le 1.5$.
- (d) Show that the values of x where the two curves intersect are the solutions to the equation $x^3 + 8x^2 + 3x 6 = 0$.

[1] (e) By drawing a suitable straight line, solve the equation
$$x^3 + 5x + 2 = 0$$
 for $-1.5 \le x \le 1.5$.

Marco is making patterns with grey and white circular mats.

The patterns form a sequence.

Marco makes a table to show some information about the patterns.

Pattern number	1	2	3	4	5
Number of grey mats	6	9	12	15	
Total number of mats	6	10	15	21	

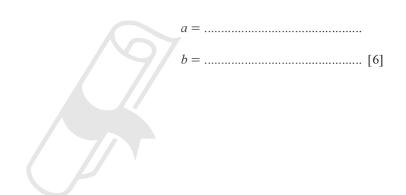
(a) Complete the table for Pattern 5.	
---------------------------------------	--

[2]

(b) Find an expression, in terms of n, for the number of grey mats in Pattern n.

	[2]
--	-----

(c) Marco makes a pattern with 24 grey mats.


Find the total number of mats in this pattern.

	 [2]

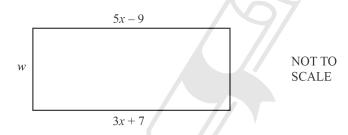
(d) Marco needs a total of 6 mats to make the first pattern. He needs a total of 16 mats to make the first two patterns. He needs a total of $\frac{1}{6}n^3 + an^2 + bn$ mats to make the first n patterns.

Find the value of a and the value of b.

AcelGCSE

- 123. 0580_s18_qp_42 Q: 4
- (a) Simplify.
 - (i) $(3p^2)^5$

.....[2]


(ii) $18x^2y^6 \div 2xy^2$

.....[2]

(iii) $\left(\frac{5}{m}\right)^{-2}$

.....[1]

(b) In this part, all measurements are in metres.

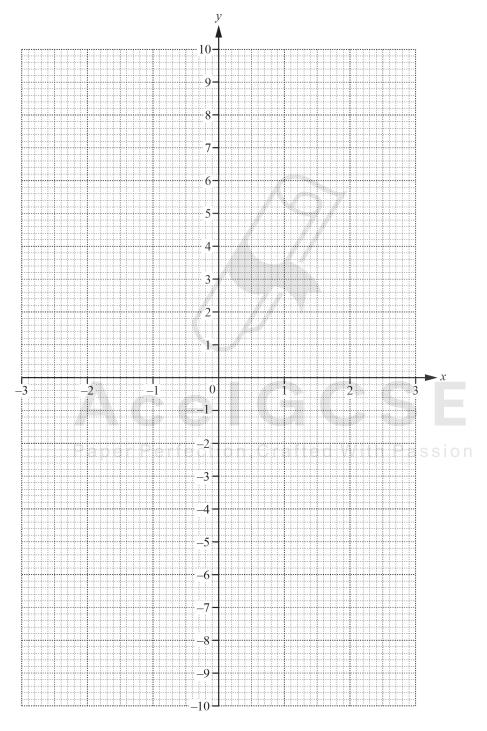
The diagram shows a rectangle. The area of the rectangle is $310 \,\text{m}^2$.

Work out the value of w.

lue of w.

Paper Perfection, Crafted With Passion

 $w = \dots [4]$


[3]

124. $0580 _s18 _qp_42 Q: 6$

(a) Complete the table of values for $y = \frac{x^3}{3} - \frac{1}{2x^2}$, $x \ne 0$.

х	-3	-2	-1	-0.5	-0.3	0.3	0.5	1	2	3
у	-9.1	-2.8	-0.8		-5.6	-5.5	-2.0			8.9

(b) On the grid, draw the graph of $y = \frac{x^3}{3} - \frac{1}{2x^2}$ for $-3 \le x \le -0.3$ and $0.3 \le x \le 3$.

[5]

(c) (i) By drawing a suitable tangent, find an estimate of the gradient of the curve at x = -2.

.....[3]

(ii) Write down the equation of the tangent to the curve at x = -2. Give your answer in the form y = mx + c.

y =.....[2]

- (d) Use your graph to solve the equations.
 - (i) $\frac{x^3}{3} \frac{1}{2x^2} = 0$

x =.....[1]

(ii) $\frac{x^3}{3} - \frac{1}{2x^2} + 4 = 0$

 $x = \dots$ or $x = \dots$ [3]

(e) The equation $\frac{x^3}{3} - \frac{1}{2x^2} + 4 = 0$ can be written in the form $ax^n + bx^{n-3} - 3 = 0$.

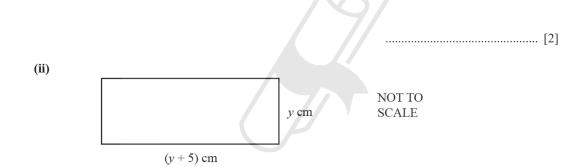
Find the value of a, the value of b and the value of n.

AcelGCSE

$$n = \dots [3]$$

125 0	580	_s18_qp_42	O: 8				
		= 8 - 3x		$\frac{10}{10}$, $x \neq -$	·1	h(x) = 2	2^x
	Find		8()	x+1''		()	
		$hf\left(\frac{8}{3}\right)$,					
(i	ii) į	gh(-2),					[2]
(ii	ii)	$g^{-1}(x)$,					[2]
(i	v) :	$f^{-1}f(5)$.				$g^{-1}(x) =$	=[3]
(b) \(\frac{1}{2} \)	Write	f(x) + g(x) = 0	as a single fra	action in its	simplest form	n.	SE
				rfectio		fted	With Passion

.....[3]


126. 0580_s18_qp_43 Q: 5

(a) At a football match, the price of an adult ticket is x and the price of a child ticket is x-2.50. There are 18 500 adults and 2400 children attending the football match. The total amount paid for the tickets is 320040.

Find the price of an adult ticket.

5	 4	.
*	 	ш

(b) (i) Factorise $y^2 + 5y - 84$.

The area of the rectangle is 84 cm².

Find the perimeter.

Paper Perfection, Crafted With Passion

..... cm [3]

\$ [3]

- (c) In a shop, the price of a monthly magazine is m and the price of a weekly magazine is (m-0.75). One day, the shop receives
 - \$168 from selling monthly magazines
 - \$207 from selling weekly magazines.

The total number of these magazines sold during this day is 100.

(i) Show that $50m^2 - 225m + 63 = 0$.

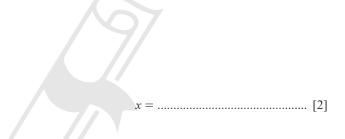
(ii) Find the price of a monthly magazine. Show all your working.

Powered by AcelGCSE

127. 0580_s18_qp_43 Q: 10

(a)
$$f(x) = 2x - 3$$

$$g(x) = x^2 + 1$$


(i) Find gg(2).

.....[2]

(ii) Find g(x+2), giving your answer in its simplest form.

.....[2]

(iii) Find x when f(x) = 7.

(iv) Find $f^{-1}(x)$.

$$f^{-1}(x) = \dots [2]$$

- **(b)** $h(x) = x^x, x > 0$
 - (i) Calculate h(0.3).
 Give your answer correct to 2 decimal places.

.....[2]

(ii) Find x when h(x) = 256.

x =.....[1]

AcelGCSE

128. 0580_w18_qp_41 Q: 9

Paulo and Jim each buy sacks of rice but from different shops.

Paulo pays \$72 for sacks costing m each.

Jim pays \$72 for sacks costing (m + 0.9) each.

(a) (i) Find an expression, in terms of m, for the number of sacks Paulo buys.

(ii) Find an expression, in terms of m, for the number of sacks Jim buys.

(b) Paulo buys 4 more sacks than Jim.

Write down an equation, in terms of m, and show that it simplifies to $10m^2 + 9m - 162 = 0$.

[4]

(c) (i) Solve $10m^2 + 9m - 162 = 0$.

Paper Perfection, Crafted With Passion

$$m = \dots$$
 or $m = \dots$ [3]

(ii) Find the number of sacks of rice that Paulo buys.

.....[1]

129. 0580 w18 qp 41 Q: 11

(a) Factorise $5m^2 - 20p^4$.

.....[3]

(b) Make *P* the subject of the formula $A = P + \frac{PRT}{100}$.

P =.....[3]

AcelGCSE

130. 0580 w 18 qp 42 Q: 2

(a) Solve 30 + 2x = 3(3 - 4x).

(b) Factorise $12ab^3 + 18a^3b^2$.

- (c) Simplify.
 - (i) $5a^3c^2 \times 2a^2c^7$

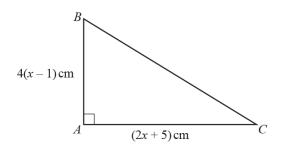
.....[2]

(d) y is inversely proportional to the square of (x + 2). When x = 3, y = 2.

Find y when x = 8.

$$y =$$
[3]

(e) Write as a single fraction in its simplest form.


$$\frac{5}{x-2} - \frac{x-5}{2}$$

.....[3]

AcelGCSE

131. 0580 w 18 qp 42 Q: 4

The diagram shows a right-angled triangle ABC.

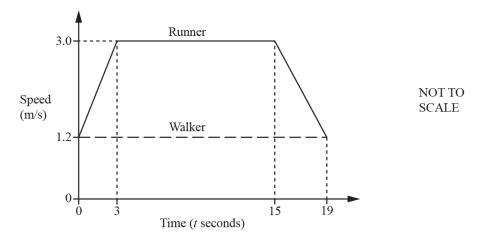
NOT TO SCALE

The area of this triangle is $30 \, \text{cm}^2$.

(a) Show that $2x^2 + 3x - 20 = 0$.

[3]

(b) Use factorisation to solve the equation $2x^2 + 3x - 20 = 0$.


Paper Perfection, Crafted With orassion [3]

(c) Calculate BC.

 $BC = \dots$ cm [3]

132. $0580 w18 qp_42$ Q: 6

The diagram shows the speed-time graph for part of a journey for two people, a runner and a walker.

(a) Calculate the acceleration of the runner for the first 3 seconds.

..... m/s² [1]

(b) Calculate the total distance travelled by the runner in the 19 seconds.

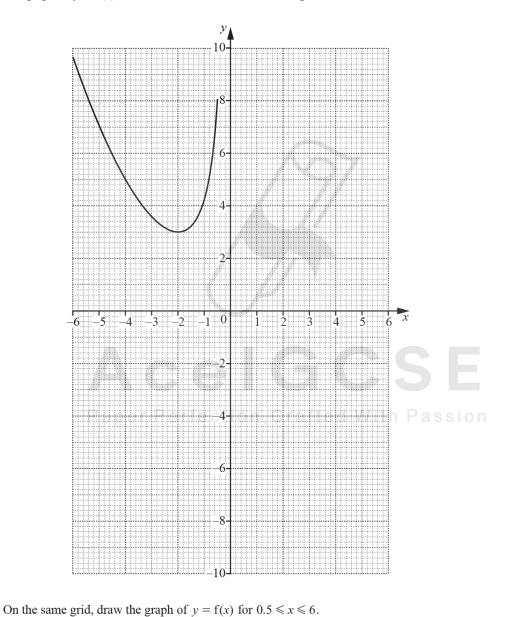
..... m [3]

(c) The runner and the walker are travelling in the same direction along the same path. When t = 0, the runner is 10 metres behind the walker.

Find how far the runner is ahead of the walker when t = 19.ted With Passion

..... m [3]

133. $0580 w18 qp_43$ Q: 4


$$f(x) = \frac{x^2}{4} - \frac{4}{x}, x \neq 0$$

(a) Complete the table for f(x).

x	0.5	1	2	3	4	5	6
f(x)	-7.9	-3.8		0.9		5.5	8.3

[2]

(b) The graph of y = f(x) for $-6 \le x \le -0.5$ is drawn on the grid.

[3]

(c) By drawing a suitable tangent, estimate the gradient of the graph of y = f(x) at the point (-4, 5).

[3	3]
	. 1

(d)
$$g(x) = \frac{9}{x}, x \neq 0$$

Complete the table for g(x).

x	-4	-3	-2	-1	1	2	3	4
g(x)	-2.3		-4.5	-9	9	4.5		2.3

[1]

- (e) On the same grid, draw the graph of y = g(x) for $-4 \le x \le -1$ and $1 \le x \le 4$. [4]
- (f) (i) Use your graphs to find the value of x when f(x) = g(x).

$$x =$$
 [1]

(ii) Write down an inequality to show the **positive** values of x for which f(x) > g(x).

	Г11
 ••	ĹτJ

(g) The exact answer to part (f)(i) is $\sqrt[3]{k}$.

Use algebra to find the value of k.

$$k = \dots$$
 [2]

134.	0580 w 18 qp 43 Q: 9 $f(x) = 3x + 4$ $g(x) = 2x - 1$ $h(x) = 3^x$	
(a)	Find $g\left(\frac{1}{2}\right)$.	
(b)	Find $fh(-1)$.	[1]
(c)	Find $g^{-1}(x)$.	[2]
(d)	$g^{-1}(x) = \dots$ Find ff(x) in its simplest form.	[2]
(e)	Find $(f(x))^2$ in the form $ax^2 + bx + c$.	[2]
(f)	Paper Perfection, Crafted With Passion $ \frac{1}{2} \int_{0}^{1} f(x) dx = g(2). $ Find x when $h^{-1}(x) = g(2)$.	[2]
	$x = \dots$	[2]

135. 0580 w 18 qp 4 3 Q: 10

(a) Find the next term and the nth term of this sequence.

 $\frac{3}{5}$, $\frac{4}{7}$, $\frac{5}{9}$, $\frac{6}{11}$, $\frac{7}{13}$, ...

Next term =

(b) Find the nth term of each sequence.

(i) -1, -3, -5, -7, -9, ...

(ii) 2, 9, 28, 65, 126, ...

136.	0580	m17	qp	42	Q:	5
------	------	-----	----	----	----	---

(a) (i) Factorise $3x^2 + 11x - 4$.

(ii) Solve the equation $3x^2 + 11x - 4 = 0$.

$$x =$$
 or $x =$ [1]

(b) (i) Show that $\frac{2}{2x+11} - \frac{1}{x-4} = \frac{1}{2}$ simplifies to $2x^2 + 3x - 6 = 0$.

(ii) Solve the equation $2x^2 + 3x - 6 = 0$. You must show all your working and give your answers correct to 2 decimal places.

$$x =$$
.....or $x =$[4]

137. $0580 _{m17}qp_{42} Q: 9$

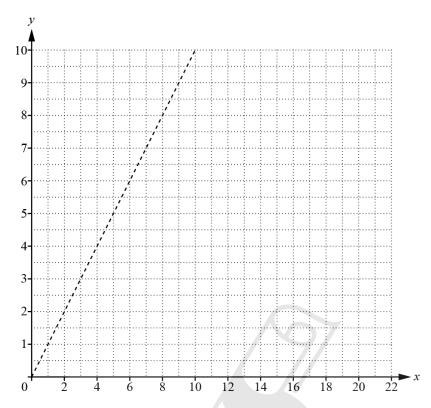
Bernie buys x packets of seeds and y plants for his garden. He wants to buy more packets of seeds than plants. The inequality x > y shows this information.

He also wants to buy

- less than 10 packets of seeds
- at least 2 plants.

(a	Write down	two more inec	\mathbf{u} alities in \mathbf{x}	or v to show	this information

•	•	•	•	•	•	•					 	•			•			•	•	•	•	•		•	•	•	•	•	•				
											 																			[4	2	ı


(b) Each packet of seeds costs \$1 and each plant costs \$3. The maximum amount Bernie can spend is \$21.

Write down another inequality in x and y to show this information.

AcelGCSE

(c) The line x = y is drawn on the grid. Draw three more lines to show your inequalities and shade the **unwanted** regions.

[5]

- (d) Bernie buys 8 packets of seeds.
 - (i) Find the maximum number of plants he can buy.

......[1]

(ii) Find the total cost of these packets of seeds and plants.

Paper Perfection, Crafted With Passion

\$.....[1]

138. $0580 _{m17}qp_{42}$ Q: 11

On Monday, Ankuri sent this text message to two friends.

Today is Day Number 1.

Tomorrow, please add 1 to the Day Number and send this text message to two friends.

All the friends who receive a text message follow the instructions.

(a) Complete the table.

Day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Day Number	1	2	3				
Number of text messages sent today	2	4					

[4]

(h)	Write down an ex	pression for the	e number of text	messages sent or	n Day Number n
•	v	vviite down an ea	tpression for th	e number of text	messages sem of	i Day Number n

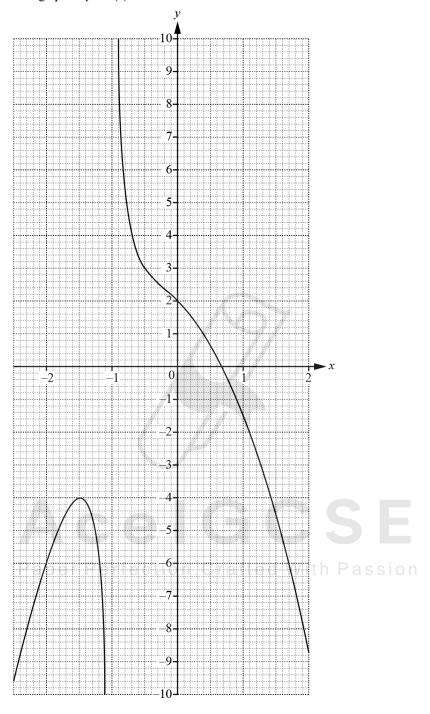
 f 1]	l

- (c) Ankuri thinks that, by the end of Day Number 3, the total number of text messages that have been sent is $2^4 2$.
 - (i) Show that she is correct.

[2]

(ii) Complete the statement.

The **total** number of text messages sent by the end of Day Number 5 is which is


equal to $2^k - 2$ where $k = 1, \dots, 1, \dots, N$ Crafted With Passion [2]

(iii)	Write down an expression for the total number of text messages sent by the end of Day Number n .
	[1]
(iv)	Find the Day Number when the total number of text messages sent by the end of the day is 1022.
	[1]

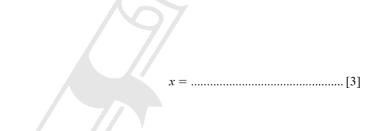
AcelGCSE

139. $0580 _s17 _qp_41 Q: 4$

The diagram shows the graph of y = f(x) for $-2.5 \le x \le 2$.

(a)	Find f(1).
(b)	Solve $f(x) = 3$.
(c)	$x = \dots $ [1] The equation $f(x) = k$ has only one solution for $-2.5 \le x \le 2$.
	Write down the range of values of k for which this is possible.
(d)	By drawing a suitable straight line, solve the equation $f(x) = x - 5$. $x = \dots \text{or } x = \dots \text{or } x = \dots [3]$
(e)	Draw a tangent to the graph of $y = f(x)$ at the point where $x = 1$.
	Use your tangent to estimate the gradient of $y = f(x)$ when $x = 1$.
	AcelGCSE

- 140. 0580_s17_qp_41 Q: 6
- (a) Expand the brackets and simplify.
 - (i) 4(2x+5)-5(3x-7)



(ii) $(x-7)^2$

(b) Solve.

(i)
$$\frac{2x}{3} + 5 = -7$$

(ii)
$$4x+9=3(2x-7)$$

(iii) $3x^2-1=74$ Paper Perfection, Crafted With Passion

$$x = \dots$$
 or $x = \dots$ [3]

141. 0580_s17_qp_41 Q: 9 (i) Write down the first two terms of this sequence.

(a) The *n*th term of a sequence is 8n-3.

.....[1]

(ii) Show that the number 203 is not in this sequence.

[2]

(b) Find the *n*th term of these sequences.

(i) 13,

19,

25,

31,

(ii) 4,

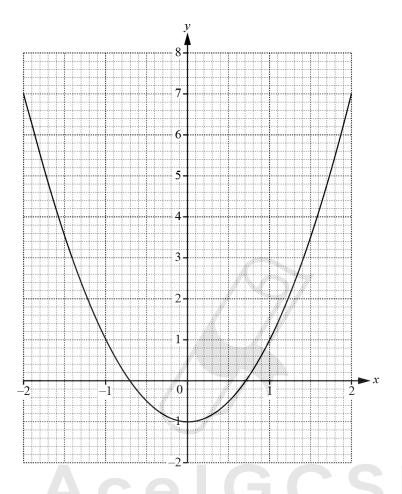
14, 22,

(c)

20,

50,

The second term of this sequence is 20 and the third term is 50. The rule for finding the next term in this sequence is subtract y then multiply by 5.


Find the value of y and work out the first term of this sequence.

y =

First term =[4]

142.
$$0580 \text{ s}17 \text{ qp} \text{ 42} \quad Q: 4$$

$$f(x) = 2x^2 - 1$$

The graph of y = f(x), for $-2 \le x \le 2$, is drawn on the grid.

(a) Use the graph to solve the equation f(x) = 5.

Paper Perfection, Crafted With Passion or
$$x = 100$$

- (b) (i) Draw the tangent to the graph of y = f(x) at the point (-1.5, 3.5). [1]
 - (ii) Use your tangent to estimate the gradient of y = f(x) when x = -1.5.

.....[2]

(c) $g(x) = 2^x$

(i) Complete the table for y = g(x).

x	-2	-1	0	1	2
y	0.25	0.5		2	4

[1]

(ii) On the grid opposite, draw the graph of y = g(x) for $-2 \le x \le 2$.

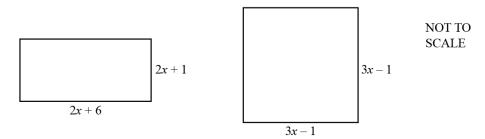
[3]

- (d) Use your graphs to solve
 - (i) the equation f(x) = g(x),

(ii) the inequality f(x) < g(x).

.....[1]

(e) (i) Write down the three values.


$$g(-3) = \dots \qquad g(-10) = \dots \qquad [1]$$

(ii) Complete the statement.

AcelGCSE

143. $0580 _s17 _qp _42 \quad Q: 7$

(a) In this part, all lengths are in centimetres.

(i) Find the value of x when the perimeter of the rectangle is equal to the perimeter of the square.

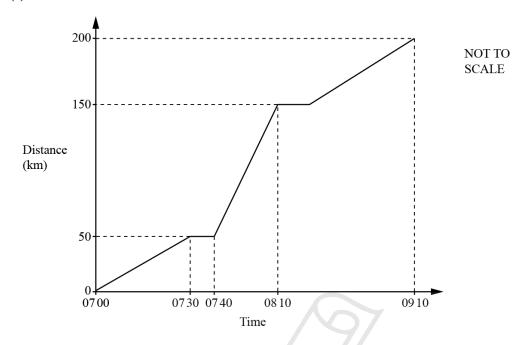
<i>x</i> =	[3]

(ii) Find the value of x when the area of the rectangle is equal to the area of the square. Show all your working.



$$x = \dots [7]$$

(b) (i) Factorise $x^2 + 4x - 5$.


.....[2]

(ii) Solve the equation $\frac{5}{x} - \frac{8}{x+1} = 1$. Show all your working.

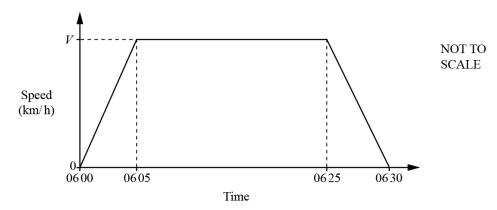
 $144.\ 0580_s17_qp_42\quad Q: 9$

(a)

The distance-time graph shows the journey of a train.

(i) Find the speed of the train between 0700 and 0730.

..... km/h [1]


(ii) Find the average speed for the whole journey.

AcelGCSE

Paper Perfection, Crafted With Passion

..... km/h [3]

(b)

The speed-time graph shows the first 30 minutes of another train journey.

The distance travelled is 100 km.

The maximum speed of the train is V km/h.

(i) Find the value of V.

(ii) Find the acceleration of the train during the first 5 minutes. Give your answer in m/s².

_
 m/s^2 [2]

145.	$0580_\mathrm{s}17_\mathrm{q}p_42$	Q: 10		
	f(x) = 3x - 2	$g(x) = x^2$	$h(x) = 3^x$	
(a)	Find $f(-3)$.			
				[1]

(b) Find the value of x when f(x) = 19.

(c) Find fh(2).

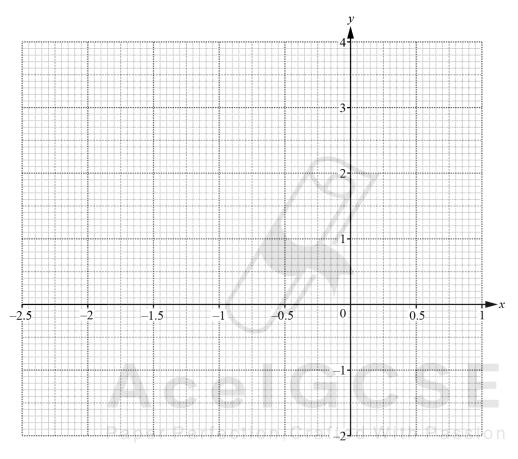
(d) Find gf(x) + f(x) + x. Give your answer in its simplest form.

Paper Perfection, Crafted With Passion[3]

(e) Find $f^{-1}(x)$.

$$f^{-1}(x) = \dots [2]$$

146. $0580_s17_qp_43$ Q: 3


The table shows some values for $y = 2x^3 + 4x^2$.

x	-2.2	-2	-1.5	-1	-0.5	0	0.5	0.8
У	-1.94				0.75	0		3.58

(a) Complete the table.

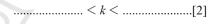
[4]

(b) Draw the graph of $y = 2x^3 + 4x^2$ for $-2.2 \le x \le 0.8$.

[4]

(c) Find the number of solutions to the equation $2x^3 + 4x^2 = 3$.

[1]


(d)	(i)	The equation $2x^3 + 4x^2 - x = 1$ can be solved by drawing a straight line on the grid
		Write down the equation of this straight line.

v =	 [1]	l

(ii) Use your graph to solve the equation $2x^3 + 4x^2 - x = 1$.

$$x = \dots$$
 or $x = \dots$ or $x = \dots$ [3]

(e) The tangent to the graph of $y = 2x^3 + 4x^2$ has a negative gradient when x = k. Complete the inequality for k.

AcelGCSE

147. 0580_s17_qp_43 Q: 7

(a) Solve the simultaneous equations. You must show all your working.

$$2x + 3y = 11$$
$$3x - 5y = -50$$

x =	 	 	

(b)
$$x^2 - 12x + a = (x+b)^2$$

Find the value of a and the value of b.

$$b = \dots [3]$$

(c) Write as a single fraction in its simplest form.

Paper Perf
$$\frac{x}{2x-5}$$
it $\frac{3x+2}{x-1}$ rafted With Passion

148. $0580 _s17 _qp _43 ~Q: 11$

The table shows the first four terms in sequences A, B, C and D.

Complete the table.

Sequence	1st term	2nd term	3rd term	4th term	5th term	<i>n</i> th term
A	16	25	36	49		
В	5	8	11	14		
С	11	17	25	35		
D	$\frac{3}{2}$	4/3	$\frac{5}{4}$	$\frac{6}{5}$		

[12]

149. 0580_w17_qp_41 Q: 3

(a) Solve.

$$11x + 15 = 3x - 7$$

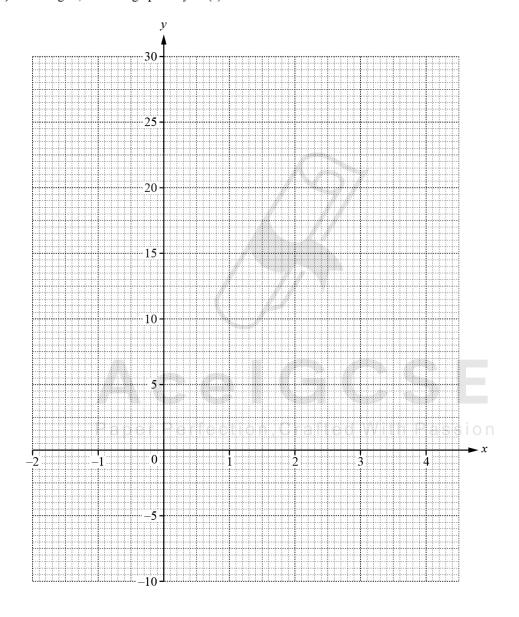
 $x = \dots [2]$

(b) (i) Factorise. $x^2 + 9x - 22$

$$x^2 + 9x - 22$$

(ii) Solve.
$$x^2 + 9x - 22 = 0$$

(c) Rearrange $y = \frac{2(x-a)}{x}$ to make x the subject.


150.
$$0580 \text{_w}17 \text{_qp} \text{_41} \quad Q: 4$$

$$f(x) = x^3 - 4x^2 + 15$$

(a) Complete the table of values for y = f(x).

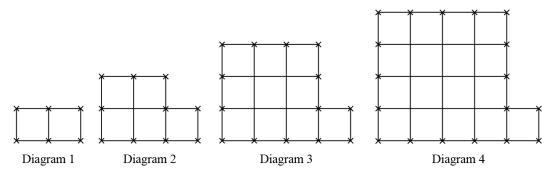
x	-2	-1	-0.5	0	1	2	2.5	3	3.5	4	4.5
У	-9		13.9	15	12		5.6	6	8.9	15	25.1

[2]

(b) On the grid, draw the graph of y = f(x) for $-2 \le x \le 4.5$.

[4]

(c) Use your graph to solve the equation f(x) = 0.


(d) By drawing a suitable tangent, estimate the gradient of the graph of y = f(x) when x = 3.5.

(e) By drawing a suitable straight line on the grid, solve the equation $x^3 - 4x^2 - 2x + 5 = 0$.

$$x = \dots$$
 or $x = \dots$ or $x = \dots$ [4]

AcelGCSE

151. $0580 w17 qp_41 Q: 6$

These are the first four diagrams in a sequence. Each diagram is made from small squares and crosses.

(a) Complete the table.

Diagram	1	2	3	4	5	n
Number of crosses	6	10	14			
Number of small squares	2	5	10			

[6]

(b) Find the number of crosses in Diagram 60.

.....[1]

(c) Which diagram has 226 squares?

Acel G S E

Paper Perfection, Crafted With Passion [1]

(d) The side of each small square has length 1 cm. The number of lines of length 1 cm in Diagram n is $2n^2 + 2n + q$.

Find the value of q.

q =[2]

152. $0580 w17 qp_41 Q: 7$

$$f(x) = 3 - 2x$$

$$f(x) = 3 - 2x$$
 $g(x) = \frac{4}{x}, x \neq 0$ $h(x) = 4^x$

$$h(x)=4$$

(a) Find f(5).

(b) Find gh(3).

(c) Find $f^{-1}(x)$.

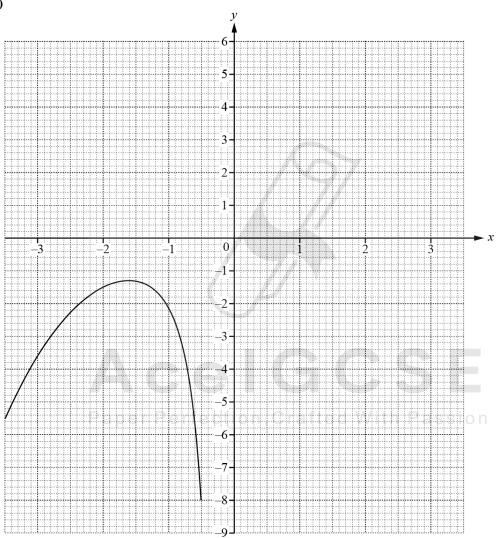
(d) Show that $hf(x) = \frac{64}{16^x}$.

[3]

(e) Find the value of x when h(x) = g(0.5).

$$x =$$
....[2]

153. 0580_w17_qp_42 Q: 5


$$y = \frac{x^3}{8} - \frac{2}{x^2}$$
, $x \neq 0$

(a) Complete the table of values.

x	0.5	1	1.5	2	2.5	3	3.5
y	-8.0	-1.9	-0.5	0.5	1.6		

[2]

(b)

The graph of
$$y = \frac{x^3}{8} - \frac{2}{x^2}$$
 for $-3.5 \le x \le -0.5$ has already been drawn.
On the grid, draw the graph of $y = \frac{x^3}{8} - \frac{2}{x^2}$ for $0.5 \le x \le 3.5$.

(c) Use your graph to solve the equation $\frac{x^3}{8} - \frac{2}{x^2} = 0$.

(d) $\frac{x^3}{8} - \frac{2}{x^2} = k$ and k is an integer.

Write down a value of k when the equation $\frac{x^3}{8} - \frac{2}{x^2} = k$ has

one answer,

$$k = \dots [1]$$

three answers. (ii)

$$k = \dots [1]$$

(e) By drawing a suitable tangent, estimate the gradient of the curve where x = -3.

(i) By drawing a suitable line on the grid, find x when $\frac{x^3}{8} - \frac{2}{x^2} = 6 - x$.

(ii) The equation $\frac{x^3}{8} - \frac{2}{x^2} = 6 - x$ can be written as $x^5 + ax^3 + bx^2 + c = 0$. Find the values of a, b and c.

$$b =$$

$$c = \dots [4]$$

154. 0580_w17_qp_42 Q: 8

(a) The cost of 1 apple is a cents.

The cost of 1 pear is p cents.

The total cost of 7 apples and 9 pears is 354 cents.

(i) Write down an equation in terms of a and p.

.....[1]

(ii) The cost of 1 pear is 2 cents more than the cost of 1 apple.

Find the value of a and the value of p.

- **(b)** Rowena walks 2 km at an average speed of x km/h.
 - (i) Write down an expression, in terms of x, for the time taken.

.....h[1]

- (ii) Rowena then walks 3 km at an average speed of (x-1) km/h. The total time taken to walk the 5 km is 2 hours.
 - (a) Show that $2x^2 7x + 2 = 0$.

GCSE

Paper Perfection, Crafted With Passion

[3]

(b) Find the value of *x*. Show all your working and give your answer correct to 2 decimal places.

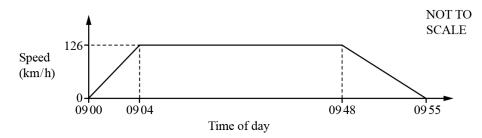
AcelGCSE

	$0580 \text{ w}17 \text{ qp} 42 \text{ Q: } 9$ $f(x) = 1 - 2x \qquad g(x) = x + 4 \qquad h(x) = x^2 + 1$ Find $f(-1)$.
(b)	Solve the equation. $2f(x) = g(x)$
(c)	$x = \dots [2]$ Find fg(x).
(6)	Give your answer in its simplest form.
(d)	[2] Find hh(2).
(e)	Paper Perfection, Crafted With Passion [2] Find f ⁻¹ (x).

 $f^{-1}(x) = \dots [2]$

(f) $hgf(x) = 4x^2 + px + q$

Find the value of p and the value of q.


AcelGCSE

	CII.	AI IER 2. ALGEDRA AND GI
156. 0580	80_w17_qp_43 Q: 2	
(a) Sol	olve.	
	$\frac{x}{7} = 49$	
	x =	[1]
(b) Sim		
(i)	x^0	
		[1]
(::)	$x^7 \times x^3$	f-1
(11)	$x \times x$	
		[1]
(iii)	$\frac{(3x^6)^2}{x^{-4}}$	
		[2]
(c) (i)	Factorise completely. $2x^2 - 18$	
	$2x^2 - 18$	
		[2]
(;;)	A C A I G C	
(11)	Simplify. $\frac{2x^2 - 18}{x^2 + 7x - 30}$ Pare tion, Crafted W	
	$Pa_p^{x^2+7x-30}$ erfection, Crafted W	lith Passion

.....[3]

157.
$$0580 w17 qp 43 Q: 3$$

The graph shows information about the journey of a train between two stations.

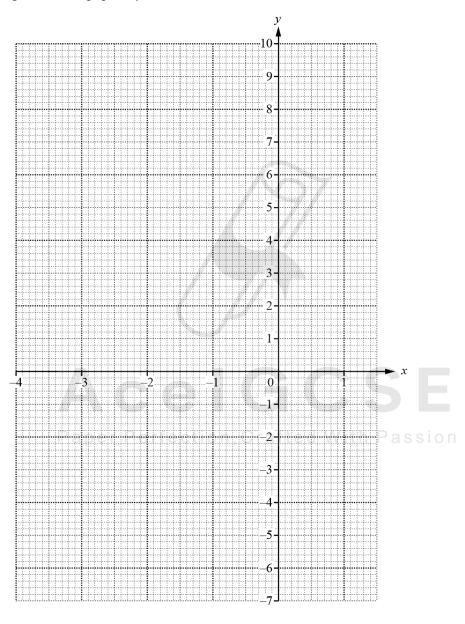
- (a) (i) Work out the acceleration of the train during the first 4 minutes of this journey. Give your answer in km/h².
 - km/h² [2]
 - (ii) Calculate the distance, in kilometres, between the two stations.

AcelGCSE

		[1]
	(ii)	The train has a total length of 220 m. At 09 30, the train crossed a bridge of length 1400 m.
		Calculate the time, in seconds, that the train took to completely cross the bridge.
(c)		a different journey, the train took 73 minutes, correct to the nearest minute, to travel 215 km, correct to the nearest 5 km.
		culate the upper bound of the average speed of the train for this journey. e your answer in km/h.
		AcelGCSE km/h [4]
		Paper Perfection, Crafted With Passion

(b) (i) Show that $126 \,\text{km/h}$ is the same speed as $35 \,\text{m/s}$.

158. $0580 w17 qp_43 Q: 7$


The table shows some values of $y = 2x^2 + 5x - 3$ for $-4 \le x \le 1.5$.

x	-4	-3	-2	-1	0	1	1.5
y		0	-5		-3	4	

(a) Complete the table.

[3]

(b) On the grid, draw the graph of $y = 2x^2 + 5x - 3$ for $-4 \le x \le 1.5$.

[4]

(c) Use your graph to solve the equation $2x^2 + 5x - 3 = 3$.

$$x = \dots$$
 or $x = \dots$ [2]

(d) $y = 2x^2 + 5x - 3$ can be written in the form $y = 2(x+a)^2 + b$.

Find the value of a and the value of b.

AcelGCSE

159. 0580_w17_qp_43 Q: 9

Luigi and Alfredo run in a 10km race.

Luigi's average speed was x km/h.

Alfredo's average speed was 0.5 km/h slower than Luigi's average speed.

(a) Luigi took $\frac{10}{x}$ hours to run the race.

Write down an expression, in terms of x, for the time that Alfredo took to run the race.

- **(b)** Alfredo took 0.25 hours longer than Luigi to run the race.
 - (i) Show that $2x^2 x 40 = 0$.

[4]

(ii) Use the quadratic formula to solve $2x^2 - x - 40 = 0$. Show all your working and give your answers correct to 2 decimal places.

AcelGCSE

Paper Perfection, Crafted With Passion $x = \dots \text{or } x = \dots \text{[4]}$

(iii) Work out the time that Luigi took to run the 10km race. Give your answer in hours and minutes, correct to the nearest minute.

...... h min [3]

160	0580	· 17	an	43	Q: 10	
160.	USSU	W11	qp	43	Q:10	

(a) (i) Write 180 as a product of its prime factors.

Г	2
	2

(ii) Find the lowest common multiple (LCM) of 180 and 54.

(b) An integer, X, written as a product of its prime factors is $a^2 \times 7^{b+2}$. An integer, Y, written as a product of its prime factors is $a^3 \times 7^2$.

The highest common factor (HCF) of X and Y is 1225. The lowest common multiple (LCM) of X and Y is 42 875.

Find the value of X and the value of Y.

AcelGCSE

X =	
Y =	Г4

01. $0580 \text{_m} 24 \text{_ms} \text{_42}$ Q: 5

Question	Answer	Marks	Partial Marks
(a)(i)	(x-4)(x+3) final answer	2	M1 for $(x+a)(x+b)$ where $ab = -12$ or $a+b=-1$ or for $x(x+3)-4(x+3)$ or $x(x-4)+3(x-4)$
(a)(ii)	$\frac{x+4}{x+3}$ final answer	2	M1 for $(x-4)(x+4)$ seen
(b)	$3x^2 - 14x + 8$ or $(x-4)(3x-2)$ final answer	3	M2 for $((2x-3)-(x+1))((2x-3)+(x+1))$ or $(4x^2-6x-6x+9)-(x^2+x+x+1)$ or better or correct answer seen or M1 for $(x-4)(ax+b)$ or $(3x-2)(x+c)$ or $(4x^2-6x-6x+9)$ or $\pm(x^2+x+x+1)$ oe
(c)	$\frac{x^2 - 3x - 12}{(x+1)(x-3)}$ or $\frac{x^2 - 3x - 12}{x^2 - 2x - 3}$ final answer	4	B1 for common denominator $(x+1)(x-3)$ oe isw B1 for $(2x+4)(x-3)-x(x+1)$ or better seen B1 for $2x^2-6x+4x-12$ or $-x^2-x$ seen

AcelGCSE

Question	Answer	Marks	Partial Marks
(d)	$2x^3 - 15x^2 + 22x + 15$ final answer	3	B2 for correct expansion of three brackets unsimplified or for simplified four-term expression of correct form with 3 terms correct in final answer or B1 for correct expansion of two brackets with at least 3 terms out of 4 correct
(e)	$2x^{2} - 3x - 77[= 0] \text{ oe}$ $(6x^{2} - 9x - 231[= 0])$ or $18y^{2} + 147y + 222[= 0] \text{ oe}$ $(6y^{2} + 49y + 74[= 0])$	M2	M1 for correct method to eliminate one variable e.g. $2(13+3y)^2 - 9y = 116$ or $2x^2 - 3(x-13) = 116$ oe
	$(2x+11)(x-7) [= 0]$ oe or $\frac{[]3 \pm \sqrt{([-]3)^2 - 4 \times 2 \times -77}}{2 \times 2}$ oe or $(6y+37)(3y+6) [= 0]$ or $\frac{-147 \pm \sqrt{147^2 - 4 \times 18 \times 222}}{2 \times 18}$ oe	M2	FT their 3-term quadratic in x or y, correct factors, correct substitution into formula or for correctly completing square M1 for a pair of factors giving 2 correct terms when expanded their quadratic or for e.g. $\sqrt{([-]3)^2 - 4 \times 2 \times -77}$ oe or $\frac{[]3 \pm \sqrt{p}}{2 \times 2}$ oe
	x = 7 and $y = -2x = -5\frac{1}{2} oe and y = -6\frac{1}{6} oe$	B2	B1 for both <i>x</i> -values or both <i>y</i> -values or for 1 correct pair

Paper Perfection. Crafted With Passion

Question	Answer	Marks	Partial Marks
(a)	Ruled line with negative gradient and positive <i>y</i> -intercept	2	B1 for ruled line with negative gradient or for ruled line with positive <i>y</i> -intercept or straight line with negative gradient and positive <i>y</i> -intercept
(b)	Negative quadratic, with vertex at origin	2	B1 for negative quadratic in other position or for sketch in 3rd and 4th quadrants only with single maximum at (0, 0) and no other turning point or for positive quadratic, with vertex at origin
(c)(i)	$18x - 6x^2 \text{ isw}$	B2	B1 for one correct term $18x$ or $-6x^2$ seen
	setting <i>their</i> derivative = 0 or $\frac{dy}{dx} = 0$	M1	Dep on at least B1 earned or <i>their</i> derivative = $\pm 18x \pm 6x^2$
	(0, 10) and (3, 37)	B2	B1 for $x = 0$ and $x = 3$ or for $(0, 10)$ or $(3, 37)$

Question	Answer	Marks	Partial Marks
(c)(ii)	(0, 10) minimum with correct reason	3	Reasons could be e.g. 1 A reasonable sketch of a negative cubic
	AND (3, 37) maximum with correct reason		2 Correct use of 2nd derivative = $-12(0) + 18$ = 18, 18 > 0, so (0, 10) is a minimum oe. 2nd derivative = $-12(3) + 18 = -18$, $-18 < 0$ so (3, 37) is a maximum oe.
			3 Evaluates correctly values of <i>y</i> on both sides of both correct stationary points
			4 Finds gradient on each side of both correct stationary points.
			B2 for 1 correct with correct reason for that stationary point
			or for both <i>x</i> -values correct and reasonable sketch of a negative cubic,
			or for correct substitution and evaluation of both of <i>their x</i> -values into <i>their</i> second derivative
			or substitution and evaluation for one <i>x</i> -value on both sides of both of <i>their</i> stationary points to find the gradients soi
			or M1 for showing [2nd derivative =] $-12x + 18$ or correct FT <i>their</i> 2 nd derivative
	Acel		or substitution and evaluation shown for one <i>x</i> -value on both sides of one of <i>their</i> stationary points to find the gradients soi
	Paper Perfection, Ca	aftec	or for sketch of any negative cubic.

03. 0580_m24_ms_42 Q: 10

Question	Answer	Marks	Partial Marks
(a)	-2.5 -1.25 5.5	3	B1 for each
(b)	Correct graph	4	B3FT for 8 or 9 correct points or B2FT for 6 or 7 correct points or B1FT for 4 or 5 correct points
(c)	y = 2 drawn	M1	
	-2.75 to -2.65	A2	A1 for 1 solution
	-1.1 to -1.05		
	0.75 to 0.85		
(d)	-2.5 5.5	2	B1 for each

04. $0580 \text{_m} 24 \text{_ms} 42 \text{ Q: } 11$

Question	Answer	Marks	Partial Marks
(a)(i)	-3.5 oe	2	M1 for $g\left(\frac{1}{2}\right)$ seen or $3\left(\frac{1}{x}\right) - 5$ or better
(a)(ii)	$\frac{x+5}{3}$ oe final answer	2	M1 for correct first step $y+5=3x$, $\frac{y}{3} = x - \frac{5}{3}$ or $x = 3y - 5$
(b)	3x-11 final answer	2	M1 for $3(x-2)-5$
(c)(i)	5 Paper Perfection, C	rafte	M1 for $\frac{1}{3x-5}[=0.1]$
(c)(ii)	4 nfww	2	
			M1 for $2^x - (3 \times 7 - 5)[= 0]$ or better

05. $0580_s24_ms_41$ Q: 3

Question	Answer	Marks	Partial Marks
(a)(i)	80	2	M1 for $\frac{1}{4} \times 5 \times 8^2$
(a)(ii)	5	2	M1 for $[y^2 =] \frac{15 \times 4}{2.4}$ oe

Question	Answer	Marks	Partial Marks		
(b)	$\frac{5x+23}{(x-1)(2x+5)} \text{ or } \frac{5x+23}{2x^2+3x-5} \text{ final}$ answer	3	B1 for $4(2x + 5) - 3(x - 1)$ oe isw B1 for common denominator = $(x - 1)$ (2x + 5) oe isw		
(c)	$2x^3 - 13x^2 + 8x + 48$ final answer	3	B2 for correct expansion of 3 brackets but unsimplified or for simplified four-term expression of correct form with 3 terms correct or B1 for correct expansion of two brackets with at least 3 terms out of 4		
			correct		
(d)	$\frac{8x^{12}}{y^6} \text{ or } 8x^{12}y^{-6} \text{ final answer}$	3	B2 for two elements correct in final answer		
			or for correct answer seen then spoiled		
		97	or for correct expression where all parts of the power have been dealt with		
			or for $\left(\right)^{-1}$ or $\left(\frac{2x^4}{y^2}\right)^3$		
	/ 7/		or B1 for 8 or y^6 or y^{-6} or x^{12} correct in		
	P		final answer		
			or for $\left(\frac{16x^{16}}{y^8}\right)^{\frac{3}{4}}$ or $\left(\frac{y^2}{2x^4}\right)^{-3}$		
AcelGCSE					

06. 0580_s24_ms_41 Q: 8

Question	Answer	Marks	Partial Marks
(a)	Correct sketch with roots indicated at $x = -9$ and $x = 2$ and y intercept = -18 Minimum should be in 3rd quadrant	4	B1 for U shaped parabola
	Translation of its of quadrant		B2 for roots at –9 and 2 on diagram
			or M1 for $(x+9)(x-2) = 0$
			B1 for y – intercept at –18 on diagram
			Maximum 3 marks if sketch not fully correct
(b)(i)	2x-3	2	B1 for $2x + k$ or $kx^{[p]} - 3$
(b)(ii)	(1.5, -30.25) oe	3	B2 for $x = 1.5$ or M1 for <i>their</i> (b)(i) = 0 or for $(x - 1.5)^2$
(c)	$x^2 - x - 33 = 0$ seen	B1	/
	$\frac{[]1 \pm \sqrt{([-]1)^2 - 4(1)(-33)}}{2 \times 1} \text{ oe}$	B2FT	FT their quadratic dep on no factors
	2×1		B1 for $\sqrt{([-]1)^2 - 4(1)(-33)}$ or better
			or B1 for $\frac{[]1 + \sqrt{q}}{2(1)}$ oe or $\frac{[]1 - \sqrt{q}}{2(1)}$
			oe
	-5.27 or -5.267 to -5.266 and 6.27 or 6.266 to 6.267	B2	B1 for each If 0 scored, SC1 for -6.27 and 5.27
	(-5.27, 15.53 or 15.54) and (6.27, -7.53 or -7.54) feetion, Cr	B1 afted	With Passion

07. 0580_s24_ms_41 Q: 9

Question	Answer	Marks	Partial Marks
(a)(i)	13	1	
(a)(ii)	-20	1	FT 6 – 2(their (a)(i))

Question	Answer	Marks	Partial Marks
(b)	$\frac{6-x}{2}$ oe final answer	2	M1 for correct first step $x = 6 - 2y$, $y - 6 = -2x$, $\frac{y}{2} = 3 - x$
(c)	2.375 oe	4	B1 for $6-2(2x-7)$ oe B1 for $4x + 1 = 6 - 4x + 14$ M1 for $8x = 19$ FT <i>their</i> linear equation rearranged correctly from $ax + b = cx + d$ to form $ex = f$
(d)	$\frac{1}{3}$ or 0.333	2	M1 for h(1) or $3^{(3^{x-2}-2)}$ or $3^{(3^{2-2}-2)}$ or better
(e)	6561	2	M1 for 3^{10-2} or $x = h(10)$

08. $0580_s24_ms_42$ Q: 7

Question	Answer	Marks	Partial Marks
(a)	2	2	M1 for $3x + 4x = 6 + 8$ or better
(b)	5a(2a+1) final answer	2	B1 for $a(10a+5)$ or $5(2a^2+a)$ or $5a(2a+1)$ then spoilt
(c)	4x(x-3) final answer	2	M1 for $((2x-3)-3)((2x-3)+3)$ or better or for $4x^2 - 6x - 6x + 9$ [-9] oe or better
(d)(i)	$\frac{1}{15}$ oe $\frac{1}{15}$	1	SE
(d)(ii)	19683aper Perfection, Cra	aftec2	B1 for g(9), 3 ⁹ or 3 ^{3^x} seen
(d)(iii)	-3	2	M1 for $3^k = \frac{1}{27}$ or $3^k = 3^{-3}$ or answer g(-3)
			or answer g(-3)

09. 0580_s24_ms_42 Q: 11

Question	Answer	Marks	Partial Marks
(a)	$-4(-1)^3 - 9(-1)^2 + 5$ or better	M1	
	= 0 [so stationary point]	A1	with no errors
(b)(i)	18	3	B2 for $6x^2 - 6$ isw OR B1 for $6x^2 + k$ (any k) isw or $px^2 - 6$ isw $(p \ne 0)$ or $6x^2 - 6 + 8$ M1dep on B1 for $x = -2$ substituted into their $\frac{dy}{dx}$
(b)(ii)	1 and -1	2	M1 for $6x^2 - 6 = 0$ oe seen or for their $\frac{dy}{dx} = 0$ if B1 scored in part (b)(i)

10. 0580_s24_ms_43 Q: 2

Question	Answer	Marks	Partial Marks
(a)(i)	56	1	
(a)(ii)	11	2	M1 for $120 - n^3 = -1211$ or $120 - 11^3 = -1211$
(b)	$0.0048 \text{ or } \frac{3}{625} \text{ oe}$	1	CSE

Paper Perfection, Crafted With Passion

Question			Aı	nswer		Marks	Partial Marks
(c)	A	-5		10 – 3n		8	B1 for -5 B2 for $10 - 3n$ oe or B1 for $k - 3n$ or for $10 - kn$
	В	<u>5</u> 8		$\frac{n}{n+3}$			B1 for $\frac{5}{8}$ B1 for $\frac{n}{n+3}$ oe
	С	20		n^2-n	<i>(</i>		B1 for 20 B2 for $n^2 - n$ oe or B1 for any quadratic or for at least two second differences of 2

AcelGCSE

$11.\ 0580_s24_ms_43\ Q\hbox{:}\ 5$

Question	Answer	Marks	Partial Marks
(a)(i)	3 cao	1	
(a)(ii)	-2, -0.45 to -0.4, 2.40 to 2.45	3	B1 each
(a)(iii)	3 cao	1	
(a)(iv)	Asymptote	1	
(b)(i)	Correct ruled line	2	B1 for ruled line through $(0, -2)$ but not $y = -2$ or for ruled line with gradient 1
(b)(ii)	1 cao	1	
(c)	Substituting values of x and y into $y = x^2 - \frac{c}{x}$ for an exact point on graph of $y = f(x)$ or substituting <i>their</i> value of x from 5b(ii) into $x^2 - \frac{c}{x} = x - 2$	M1	
	leading to $c = 2$ with no errors	A1	
(d)	[p =] -1 and $[q =] 2$ nfww	2	M1 for $x^3 - x^2 + 2x = 2$ seen or B1 for each nfww

12. 0580_s24_ms_43 Q: 10

Question	Paper Answer ection, Cr	Marks	With Partial Marks
(a)	$7x^6 - 42x^5$ final answer	2	B1 for one correct term $7x^6$ or $42x^5$ or for $7x^6 - 42x^5$ seen and spoiled

Question	Answer	Marks	Partial Marks
(b)	49x + 41	4	M1 for substituting $x = -1$ into $[y =]x^7 - 7x^6$ M1 for $x = -1$ substituted in <i>their</i> (a) or the correct derivative to give <i>their m</i> M1 for <i>their</i> $-8 = (their m)(-1) + c$ oe
(c)	(0, 0) (6, -46 656)	5	B4 for $(6, -46656)$ or B3 for $x = 0$ and 6 OR M1 for <i>their</i> $\frac{dy}{dx} = 0$ or stating $\frac{dy}{dx} = 0$ and M1 for a correct method to solve <i>their</i> $7x^6 - 42x^5$

13. 0580_m23_ms_42 Q: 5

Question	Answer	Marks	Partial Marks
(a)	$6p^4 - 13p^2 + 6$ final answer	2	B1 for three of $6p^4 - 9p^2 - 4p^2 + 6$ seen
(b)(i)	175	2	M1 for $\frac{1}{2}(20+30)\times 7$ oe
(b)(ii)	$\frac{2s-ut}{t}$ or $\frac{2s}{t}-u$ final answer	a fit o	B2 for correct answer but unsimplified e.g. $\frac{s \div t}{0.5} - u$, $\frac{s}{\frac{1}{2}t} - u$, $\frac{s}{0.5t} - u$ OR M1 for correct multiplication by 2 or division by 0.5 M1 for correctly rearranging terms to isolate term in v M1 for correct division by t Max 2 marks if final answer incorrect
(c)(i)	(2q-3)(t+2) final answer	2	B1 for $t(2q-3)+2(2q-3)$ or $2q(t+2)-3(t+2)$

Question	Answer	Marks	Partial Marks
(c)(ii)	x(x+5)(x-5) final answer		B2 for $(x^2 - 5x)(x+5)$ or $(x^2 + 5x)(x-5)$ or for correct answer seen then spoiled
			or B1 for $x(x^2 - 25)$

14. 0580_m23_ms_42 Q: 9

Question	Answer	Marks	Partial Marks
(a)	-3	3	B2 for $3x^2 - 6x$ or B1 for $3x^2 - kx$ or for $kx^2 - 6x$ or for $3x^2 - 6x + c$
(b)	(0, -4) and (2, -8)		B3 for $x = 0$ and 2 or for $(2, -8)$ OR M1 for <i>their</i> $3x^2 - 6x = 0$ or stating $\frac{dy}{dx} = 0$ oe
			M1 for correct method to solve <i>their</i> $3x^2 - 6x = 0$

Question	Answer	Marks	Partial Marks
(c)	Correct sketch	2	Max on negative y-axis and min in correct quadrant and extends into first quadrant
			B1 for positive cubic graph and two turning points

15. $0580 \text{_m} 23 \text{_ms} 42 \text{ Q: } 11$

Question	Answer	Marks	Partial Marks
(a)	1	1	
(b)	$-\frac{1}{5}$ or -0.2	2	M1 for $2x - 1 + 3x + 2 = 0$ oe isw
(c)	9x + 8 final answer	2	M1 for $3(3x+2)+2$

Question	Answer	Marks	Partial Marks
(d)	$\frac{4x^2 + 5x - 3}{x(2x - 1)} \text{ final answer}$ Paper Perfection, C		M1 for $\frac{1}{2x-1}$ and $3\left(\frac{1}{x}\right)+2$ oe B1 for $x+3(2x-1)+2x(2x-1)$ oe or better isw B1 for common denominator = $x(2x-1)$ isw If 0 scored, SC1 for answer $\frac{4x^2+9x+3}{x(2x+1)}$
(e)	h(x) indicated	1	

16. 0580_s23_ms_41 Q: 7

Question	Answer	Marks	Partial Marks
(a)(i)	3(3y-1)(3y+1) final answer	3	B2 for $(9y-3)(3y+1)$ or $(3y-1)(9y+3)$ or or M1 for $3(9y^2-1)$ or [] $(3y-1)(3y+1)$ if 0 scored SC1 for an otherwise correctly completely factorised expression but with fractions within the brackets
(a)(ii)	(2-p)(m+k) final answer	2	M1 for $2(m+k)-p(m+k)$ or $m(2-p)+k(2-p)$
(b)	$-\frac{1}{2}$ oe nfww	5	B4 $-8x = +4$ oe nfww or B3 for $\frac{x^2 - 8x - 5}{(x-1)(x+1)} = 1$ or better OR B2 $x^2 - 8x - 5$ or M1 for $(x-1)(x-1) - 6(x+1)$ or better B1 $(x-1)(x+1)$ as full denominator or on the right hand side

AcelGCSE

Question	Answer	Marks	Partial Marks
(c)	$\frac{-(-3) \pm \sqrt{(-3)^2 - 4(4)(-2)}}{2 \times 4} \text{ oe}$ or $\frac{3}{8} \pm \sqrt{\left(\frac{3}{8}\right)^2 + \frac{2}{4}} \text{ oe}$	M2	M1 for $\sqrt{(-3)^2 - 4(4)(-2)}$ or for $\frac{-(-3) + \sqrt{q}}{2(4)}$ or $\frac{-(-3) - \sqrt{q}}{2(4)}$ or for $[4]\left(x - \frac{3}{8}\right)^2$
	-0.43 and 1.18 final ans cao	A2	SC1 for -0.4 ,-0.42 or -0.425 and 1.2 or 1.17 or 1.175 or answers 0.43 and -1.18 or -0.43 and 1.18 seen in working
(d)	$k = \frac{4m}{1 - pm} \text{ or } k = \frac{-4m}{pm - 1}$ final answer	4	M1 for clearing fractions M1 for collecting terms in k M1 for factorising M1 for dividing by bracket Maximum 3 marks if answer incorrect

AcelGCSE

17. 0580_s23_ms_41 Q: 8

Question	Answer	Marks	Partial Marks
(a)	$y \le 7$ oe x + y < 14 oe $y > \frac{2}{3}x$ oe	3	B1 for each
(b)	x = 4 solid y = 7 solid x + y = 14 dashed $y = \frac{2}{3}x$ dashed	M4	B1 for each
	correct shading everywhere but region R	A2	M1dep (dependent on M4 or B1B1B1B0 where the only error is wrong use of solid/dashed lines) for shading the correct side of 3 of the 4 lines.

Question	Answer	Marks	Partial Marks
(c)	4 dresses and 3 shirts	1	
(d)	Ace I	2	M1 for $10x + 6y$ evaluated for (x, y) in their region R or B1 for $(7, 6)$
	Donor Dorfootion		After 0 scored, SC1 for answer 112 or 116

18. 0580_s23_ms_41 Q: 10

Question	Answer	Marks	Partial Marks
(a)(i)	-7	1	
(a)(ii)	$\frac{x-5}{2}$ oe final answer	2	M1 for correct first step e.g. $x = 2y + 5$ or $2x = y - 5$ or $\frac{y}{2} = x + \frac{5}{2}$
(a)(iii)	$2x^3 - 11x^2 - 8x + 80 $ final answer	4	M1 for $(x-4)(2x+5)(x-4)$ oe B2 for $2x^3 - 8x^2 - 8x^2 + 5x^2 - 20x - 20x + 32x + 80$ or for simplified 4 term expression of the correct form with 3 terms correct in final answer or B1 for 3 terms correct out of 4 from $x^2 - 4x - 4x + 16 \text{ or } 2x^2 - 8x + 5x - 20$

Question	Answer	Marks	Partial Marks
(b)	0	2	M1 for $g(-2)$ or $2(x-4) + 5$ oe or $3^x = 1$ or $g(f(2)) = 1$

19. $0580_s23_ms_42$ Q: 6

Question	Answer	Marks	Partial Marks
(a)(i)	$\frac{1}{5}$, $\frac{2}{7}$, $\frac{3}{9}$ final answer Paper Perfection, C		B1 for 2 correct terms isw or for 0.2 and (0.286 or 0.2857) and 0.333 Passion
(a)(ii)	36	2	M1 for $k = \frac{12(2k+3)}{25}$ or better

Question	Answer	Marks	Partial Marks
(b)(i)	$n^3 + 5$ oe final answer	2	B1 for any cubic or common third differences of 6 (at least 2) or for correct answer seen and spoilt
(b)(ii)	$100 \times 2^{1-n}$ oe final answer	2	B1 for 2^{-n} [+k] oe or $\left(\frac{1}{2}\right)^{n[+k]}$ oe in answer or for correct answer seen and spoilt

20. 0580_s23_ms_42 Q: 9

Question	Answer	Marks	Partial Marks
(a)(i)	$27x^6y^{12}$ final answer	2	B1 for two terms correct in answer e.g. $27x^6y^k$ or $27x^ky^{12}$ or kx^6y^{12} or for correct answer seen then spoilt

Question	Answer	Marks	Partial Marks
(a)(ii)	$\frac{x^{24}y^{12}}{64}$ final answer	3	B2 for final answer with two correct elements or final answer $\frac{64}{x^{24}y^{12}}$ or $\frac{64^{-1}}{x^{-24}y^{-12}}$ or better or for correct answer seen or B1 for 64 or x^{24} or y^{12} seen in final answer or final answer $\frac{k}{x^{-24}y^{-12}}$ or M1 for first correct step seen eg $\left(\frac{x^{16}y^8}{16}\right)^{\left[\frac{3}{2}\right]}$ or $\left(\frac{4}{x^8y^4}\right)^{\left[-3\right]}$ or $\left(\frac{4096}{x^{48}y^{24}}\right)^{\left[-\frac{1}{2}\right]}$
(b)(i)	(x+3)(x-3) final answer	1	
(b)(ii)	$\frac{x+3}{2y+5}$ final answer	3	M2 for $(x-3)(2y+5)$ or M1 for $2y(x-3)+5(x-3)$ or $x(2y+5)-3(2y+5)$
(c)	$5x^2 + 4x - 20 = 0$ oe or $5y^2 - 78y + 221 = 0$ oe	M2	M1 for $7 - 2x = 5x^2 + 2x - 13$ oe seen or $y = 5\left(\frac{7 - y}{2}\right)^2 + 2\left(\frac{7 - y}{2}\right) - 13$ oe seen
	$\frac{-4 \pm \sqrt{(4)^2 - 4(5)(-20)}}{2(5)} \text{ oe}$ or $-\frac{4}{10} \pm \sqrt{4 + \left(\frac{4}{10}\right)^2} \text{ oe}$	M2 rafted	FT their 3-term quadratic or M1 for $\sqrt{(4)^2 - 4(5)(-20)}$ or better or for $\frac{+4 + \sqrt{q}}{2 \times 5}$ or $\frac{-4 + \sqrt{q}}{2 \times 5}$ or for $\left(x + \frac{4}{10}\right)^2$ oe
	x = 1.64 y = 3.72 and x = -2.44 y = 11.88	B2	B1 for one correct pair or both <i>x</i> -values correct or both <i>y</i> – values correct

21. 0580_s23_ms_43 Q: 10

Question	Answer	Marks	Partial Marks
(a)	-2.5 -2 -1	3	B1 for each
(b)	Correct curve	4	B3 FT for 8 or 7 correct plots B2 FT for 6 or 5 correct plots B1 FT for 4 or 3 correct plots
(c)	2.3 to 2.4	1	
(d)	ruled line $y = x - 1.5$	M2	M1 for $y = x - 1.5$ soi or for $2^x - 3 = x - 1.5$ seen.
			or $y = x + k$ or $y = kx - 1.5$ drawn Do not accept $y = -1.5$
	-1 and 1.55 to 1.7	A2	A1 for each

AcelGCSE

Question	Answer	Marks	Partial Marks
(a)	1960	2	M1 for $\frac{1}{2} \times 9.8 \times 20^2$ oe
(b)	1.5 or $1\frac{1}{2}$ or $\frac{3}{2}$	3	M1 for a first correct step, e.g. 20y - 15 = 15 or $4y - 3 = 3M1FTdep for a second correct step, e.g.20y = 30$ or $4y = 6or y - \frac{15}{20} = \frac{15}{20} oe$
(c)	9x - 10 final answer	2	B1 for $kx - 10$ or $9x + c$
			or M1 for $15x - 24$ or $-6x + 14$ or B1 for correct answer seen and then spoiled
(d)	$\sqrt[3]{\frac{2b^2 - A}{3}}$ oe final answer	3	M1 for isolating $3c^3$, $3c^3 = 2b^2 - A$ oe or for $\frac{A}{3} = \frac{2b^2}{3} - c^3 \text{ or } \frac{A}{-3} = \frac{2b^2}{-3} + c^3$ M1FT for isolating c^3 , follow through their first step dep on a 3-term expression with a kc^3 term M1FT taking the cube root to the final answer, follow through their previous step Maximum of two marks if answer incorrect
(e)	(2q-1)(3p-2) or $(1-2q)(2-3p)$ final answer	2	M1 for $2q(3p-2) - [1](3p-2)$ or $3p(2q-1) - 2(2q-1)$ or for correct answer seen then spoiled

Paper Perfection, Crafted With Passion

23. 0580_w23_ms_41 Q: 6

Question	Answer	Marks	Partial Marks
(a)	A 9	B1	
	4n - 11 oe final answer	B2	B1 for $4n - k$ or $jn - 11$ oe $j \neq 0$
	B 55	B1	
	$2n^2 + 5$ oe final answer	B2	B1 for any quadratic or second differences = 4
	$C = \frac{6}{2187}$ oe	B1	
	$\frac{n+1}{3^{n+2}}$ oe final answer	В3	B2 for 3^{n+2} oe OR B1 for 3^{n+k} seen oe B1 for $n+1$ as the numerator of a fraction
(b)	331 cao	1	

24. 0580_w23_ms_41 Q: 9

Question	Answer	Marks	Partial Marks
(a)(i)	-20	1	
(a)(ii)	$\frac{x+3}{2}$ oe final answer	2	M1 for $x = 2y - 3$ or better or $y + 3 = 2x$ or better or $\frac{y}{2} = x - \frac{3}{2}$ or better
(a)(iii)	125	2	M1 for g(64) or $2(4^{2x-1}) - 3$
(b)	2.5 Poe per Perfection	n , C r a 1	M1 for $2(2x) - 3 = 7$ or better
(c)	$2x^2 + 4x - 11$ final answer	3	B2 for $2x^2$ and either $+4x$ or -11 in final 3 term answer or for correct answer seen then spoiled
			or M1 for $2x^2 - 3 + 2(2x - 3) - 3 [+1]$

Question	Answer	Marks	Partial Marks
(d)	1.5 oe	2	M1 for $4^{2x-1} = 4^2$ or better
(e)	a = 3 b = 4 c = -59 d = -20	3	B2 for 3 correct values or for correct unsimplified expanded expression or for simplified four-term expression of correct form with 3 terms correct or B1 for 2 correct values or for correct expansion of one pair of brackets with at least 3 out of 4 terms correct.

25. 0580_w23_ms_41 Q: 11

Question	Answer	Marks	Partial Marks
(a)	$3x^2 - 8x - 3$	2	B1 for two terms correct or correct answer seen

Question	Answer	Marks	Partial Marks
(b)	$3x^2 - 8x - 3 = 0$	M1	FT their part (a)
	Correct method to solve their 3-term quadratic $(3x+1)(x-3)$ [=0] $-(-8) \pm \sqrt{(-8)^2 - 4(3)(-3)}$ 2(3)	M2	M1 for $(3x + a)(x + b)$ [=0] where $ab = -3$ or $3b + a = -8$ or for $\sqrt{(-8)^2 - 4(3)(-3)}$
	Ace Paper Perfection	n, Cra	or for $\frac{p \pm \sqrt{q}}{r}$ where $p = -(-8)$ and $r = 2(3)$ seen or for a correct method for solving a 2-term quadratic
	$(3, -18) \\ \left(-\frac{1}{3}, \frac{14}{27}\right)$	B2	B1 for one correct point or for two correct <i>x</i> -values, or M1 for substitution of <i>their x</i> -values into $y = x^3 - 4x^2 - 3x$ shown

Question	Answer	Marks	Partial Marks
Question (c)	(3, -18) minimum with reason $\left(-\frac{1}{3}, \frac{14}{27}\right)$ maximum with reason	Marks 3	Reasons could be e.g. 1. A reasonable sketch of a positive cubic 2. Correct use of 2nd derivative = $6x - 8 = 10$, $10 > 0$, so $(3, -18)$ is a minimum oe. 2nd derivative = $6x - 8 = -10$, $-10 < 0$ so $\left(-\frac{1}{3}, \frac{14}{27}\right)$ is a maximum oe. 3. Evaluates correctly values of y on both sides of both correct stationary points 4. Finds gradient on each side of both correct stationary points. B2 for 1 correct with a reason for that stationary point or for both x -values correct with correct conclusions and reasonable sketch of a positive cubic, or for correct substitution of both of their x -values into their second derivative shown, or substitution shown for one x -value either side of both of their stationary points to find the gradients. Or M1 for showing [2nd derivative =] $6x - 8$ or substitution shown for one x -value either side
	Acel	G	or substitution shown for one <i>x</i> -value either side of one of <i>their</i> stationary points to find the gradients. or for reasonable sketch of positive cubic.

Paper Perfection.Crafted With Passion

26. 0580 w 23 ms 42 Q: 5

Question	Answer	Marks	Partial Marks
(a)	20	2	M1 for $11x = 10(x+2)$ oe

Question	Answer	Marks	Partial Marks
(b)(i)	$\frac{95}{y} + \frac{147}{y+2} = 12$	M2	M1 for $\frac{95}{y}$ or $\frac{147}{y+2}$
	95(y+2)+147y=12y(y+2) oe	M1	Allow correct or for clearing <i>their</i> equation with algebraic fractions in y and $y + 2$ Allow $95y + 190 + 147y = 12y^2 + 24y$ oe
	leading to $6y^2 - 109y - 95 = 0$	A 1	With all brackets shown expanded and no errors or omissions
(b)(ii)	(6y + 5)(y - 19)	2	B1 for (6y + a)(y + b) with $ab = -95$ or $a + 6b = -109or (3y + a)(2y + b) with ab = -95or 2a + 3b = -109or for partial factorisationy(6y + 5) - 19(6y + 5)$ or $6y(y - 19) + 5(y - 19)$
(b)(iii)	19	1	Correct or FT <i>their</i> positive answer from factors dep on B1 earned

27. 0580_w23_ms_42 Q: 11

Question	Answer	Marks	Partial Marks
(a)	4	1	
(b)	7 - 3x final answer	2	M1 for $1 - 3(x - 2)$
(c)	$\frac{1-x}{3}$ oe final answer	2	M1 for $x = 1 - 3y$ or $y - 1 = -3x$ or $1 - y$ = $3x$ or $\frac{y}{3} = \frac{1}{3} - x$
(d)	a = 2, b = 5, c = -1	5	B4 for two correct values only after correct substitution seen i.e. $(1-3x-1)^2 - (x-1)^2(1-3x)$ or for correct unsimplified expansion or a correct simplified expansion. OR M1 for $(1-3x-1)^2 - (x-1)^2(1-3x)$ B2 for correct expansion of $[-](x-1)^2(1-3x)$ $[-](x^2-x-x+1-3x^3+3x^2+3x^2-3x)$ or better or B1 for expansion of one pair of brackets $[(x-1)^2 =]x^2-x-x+1$ or better or $[(x-1)(1-3x) =]-3x^2+x+3x-1$

Question	Answer	Marks	Partial Marks
(e)	$\frac{3-x+3x^2}{ x } $ final answer	afted	B1 for $3-x(1-3x)$ or better B1 for common denominator x isw
(f)	_7	1	

28. 0580_w23_ms_43 Q: 6

Question	Answer	Marks	Partial Marks
(a)(i)	7	1	
(a)(ii)	$\frac{1}{8}$ oe	2	M1 for g(-0.5) or for 64 $5(x)-3$ or better

Question	Answer	Marks	Partial Marks
(b)	$\frac{2-x}{x}$ or $\frac{2}{x}-1$ final answer	3	M1 for $y(x+1) = 2$ or $x = \frac{2}{y+1}$ or better
			M1 for $\frac{2-y}{y}$ or $xy = 2-x$ oe
С	$-\frac{5}{6}$ -0.833 or better	2	M1 for $[64^x =] 2^{6x}$ or $(2^6)^x$ or $6x = -5$
(d)	$\frac{7-9x}{(5x-3)(x+1)}$ or $\frac{7-9x}{5x^2+2x-3}$ or	4	B1 for $\frac{1}{5x-3} - \frac{2}{x+1}$
	$-\frac{9x-7}{5x^2+2x-3}$ final answer		M1 for $x + 1 - 2(5x - 3)$ seen isw
			M1 for $(5x - 3)(x + 1)$ seen isw

29. 0580_w23_ms_43 Q: 10

Question	Answer	Marks	Partial Marks
(a)	14x - 22 or 2(7x - 11) final answer	2	B1 for answer $kx - 22$ or $14x + c$ or for $8x - 4$ or $-18 + 6x$ or for correct answer seen in working
(b)(i)	3xy(2x+3) final answer	2	M1 for answer $3(2x^2y + 3xy)$ or $3x(2xy + 3y)$ or $3y(2x^2 + 3x)$ or $xy(6x + 9)$ B1 for correct answer seen and spoilt
(b)(ii)	(2x+y)(2x-y+4) final answer	3	M1 for $(2x + y) (2x - y)$ M1 for $4(2x + y)$ If 0 scored, SC1 for answer $4x(x + 2) + y(4 - y)$ oe
(c)(i)	$\frac{100}{x} + \frac{150}{x+10} = \frac{4}{3} \text{ oe}$ or $150 = \left(\frac{13}{3} - \frac{100}{x}\right)(x+10)$	M1 n,Cr	afted With Passion
	$\frac{100(x+10)+150x}{x(x+10)} = [= their 4\frac{1}{3}] \text{or} \text{better}$	M1	
	$300x + 3000 + 450x = 13x^2 + 130x$ oe or better	B1	Allow correct multiples
	$13x^2 - 620x - 3000 = 0$	A1	With no errors or omissions

Question	Answer	Marks	Partial Marks
(c)(ii)	$\frac{[]620 \pm \sqrt{(-620)^2 - 4(13)(-3000)}}{2(13)}$ or $-\frac{(-620)}{2 \times 13} \pm \sqrt{\frac{620^2}{4 \times 13^2} - \frac{(-3000)}{13}}$ both oe or better	M2	M1 for $\sqrt{(-620)^2 - 4 \times 13 \times -3000}$ oe or for $\frac{620 + \sqrt{p}}{2(13)}$ or $\frac{620 - \sqrt{p}}{2(13)}$ oe
	52.1 final answer	B1	

30. 0580_m22_ms_42 Q: 2

Question	Answer	Marks	Partial Marks
(a)	1[.0] 0.9	2	B1 for each
(b)	correct curve	4	B3 FT for 6 or 7 points B2 FT for 4 or 5 points B1 FT for 2 or 3 points

Question	Answer	Marks	Partial Marks
(c)	ruled line at $y = -1$	B1	
	0.3 to 0.32	В1	V

31. 0580_m22_ms_42 Q: 3

Question	Answer	Marks	Partial Marks
(a)(i)	Paper Perfection	Crai	M1 for g(13) or $(1+4x)^2$ or better
(a)(ii)	$1+4x^2$ final answer	1	
(a)(iii)	x	1	
(b)	3.5 or $\frac{7}{2}$	2	M1 for $1 + 4x = 15$

32. 0580_m22_ms_42 Q: 8

Question	Answer	Marks	Partial Marks
(a)	$\frac{12}{x} + \frac{26}{x+10} = 2.8$ oe isw	3	B2 for $\frac{12}{x} + \frac{26}{x+10}$ oe isw OR B1 for $\frac{26}{x+10}$ seen B1 for time = 2.8 or $\frac{168}{60}$ or $2\frac{48}{60}$ oe
(b)	12(x+10) + 26x = 2.8x(x+10) or better	M2	FT their time, provided 2 algebraic fractions one in x and other in $\pm x \pm 10$ M1 for $12(x+10) + 26x$ seen or better
	$12x + 120 + 26x = 2.8x^2 + 28x$	М1	FT their equation dep on M2
	$2.8x^{2} - 10x - 120 = 0 \text{ oe}$ or $30x + 300 + 65x = 7x^{2} + 70x$ or better leading to $7x^{2} - 25x - 300 = 0$	A1	with no errors or omissions
(c)	$ \frac{[]25 \pm \sqrt{([-]25)^2 - 4 \times 7 \times -300}}{2 \times 7} $ oe	В2	B1 for $\sqrt{([-]25)^2 - 4(7)(-300)}$ or better or for $\frac{[]25 + \sqrt{q}}{2 \times 7}$ or $\frac{[]25 - \sqrt{q}}{2 \times 7}$
	- 5 and 8.57 or 8.571	В2	B1 for each or SC1 for final answers 5 and -8.57
(d)	84 to 84.01	2	FT $\frac{720}{their \text{ positive answer}}$ to 3 sf or better M1 for $\frac{12}{their \text{ positive answer}}$ [× 60] oe

33. 0580_m22_ms_42 Q: 10

Question	Answer	Marks	Partial Marks
(a)	$x^3 + 2x^2 - 5x - 6$ final answer	3	B2 for correct expansion of three brackets unsimplified or for simplified expression of correct form with 3 out of 4 terms correct
	Paper Perfectio	n, Cra	or B1 for correct expansion of 2 of the 3 given brackets with at least 3 terms out of four correct
(b)	$\frac{Mc}{M-2f}$ or $\frac{-Mc}{2f-M}$ final answer	4	M1 for clearing $g-c$ from denominator e.g. $M(g-c)=2fg$ M1 for correctly isolating terms in g in numerator on one side M1 for correctly factorising or simplifying, to single term in g in an equation M1 for correctly dividing by bracket to final answer
(c)	$\frac{4x}{x+4}$ final answer	3	B1 for $4x(x-4)$ B1 for $(x+4)(x-4)$

34. 0580_m22_ms_42 Q: 12

Question	Answer	Marks	Partial Marks
(a)	85[.0], 265[.0] and no others	2	B1 for each If 0 scored SC1 for two values in the range with a difference of 180 but not multiples of 90
(b)	correct shape and passes through origin	3	B1 for any positive cubic shape B1 for sketch with one max and one min and with 3 roots including zero If 0 scored, SC1 for $x(x + 2)(x - 2)$ soi
(c)	a = -12 b = 5 k = -11	6	B5 for 2 correct OR B2 for $3x^2 + a$ or B1 for $3x^2$ isw M1dep on at least B1 for their $\frac{dy}{dx} = 0$ M1dep on at least B1M1 for $x = 2$ or $x = -2$ substituted in their $\frac{dy}{dx} = 0$ equation M1 for $k = 2^3 + 2 \times their a + b$ and $10 - k = (-2)^3 + (-2) \times their a + b$

35. 0580_s22_ms_41 Q: 3

Question	Answer	Marks	Partial Marks
(a)(i)	6	3	B2 for $4x + 6 = 30$ or better or M1 for $x + x + 7 + 2x - 1$ [= 30]
(a)(ii)	21	3	M2 for $(555 - their \ x \times 15 - their \ (x + 7) \times 18) = their \ (2x - 1)$
	100010		or M1 for their $x \times 15$ or their $(x + 7) \times 18$
(b)(i)	8 ACEIL	2	M1 for isolating the term in w or correctly removing all fractions
	Paper Perfection, Cr	afte	e.g. $\frac{3w}{16} = 1 + \frac{1}{2}$ or better or $3w - 16 = 8$
(b)(ii)	-3	2	M1 for $2^{-y} = 8$ or $2^y = \frac{1}{8}$ or $2^{-y} = their w$ or better

Question	Answer	Marks	Partial Marks
(c)(i)	$[p=]\frac{1}{2}$ oe $[q=]1$	2	B1 for each If zero scored, SC1 for 2 values satisfying one of the original equations
(c)(ii)	[u=] 30 and 150 [v=] 0 and 360	4	B1 for each OR SC1 for $\sin u = their p$ and $\cos v = their q$ SC1 if their two different angles for u sum to 180 or if their different two angles for v sum to 360

36. 0580_s22_ms_41 Q: 4

Question	Answer	Marks	Partial Marks
(a)(i)	3	1	
(a)(ii)	7		FT their (i) 3×their (i)-2
(b)	$\frac{x+2}{3}$ oe final answer	2	M1 for $y + 2 = 3x$ or $\frac{y}{3} = x - \frac{2}{3}$ or $x = 3y - 2$
(c)	25	2	M1 for $\frac{1}{x} = 5^{-2}$ oe
(d)	$\frac{2x^2 - x - 1}{x}$ final answer	2	M1 for $2x - 1 - \frac{1}{x}$
(e)	2.98 × 10 ¹⁷ or 2.980 × 10 ¹⁷	1	
(f)	625	2	M1 for $x = j(4)$

Paper Perfection,Crafted With Passion

37. 0580_s22_ms_41 Q: 6

Question	Answer	Marks	Partial Marks
(a)(i)	-3	1	
(a)(ii)	-1 1.55 to 1.6 4.4 to 4.45	3	B1 for each
(a)(iii)	-8	1	
(a)(iv)	Ruled line through origin intersecting curve once	2	B1 for ruled line through origin
(b)(i)	18	3	B2 for 6 <i>x</i> – 12 or B1 for 6 <i>x</i> or –12
(b)(ii)	(2, -5)	2	B1 for each. If 0 scored, M1 for their $6x - 12 = 0$ or states $\frac{dy}{dx} = 0$
(c)	[p =] 7 [q =] 3	2	B1 for each

AcelGCSE

38. $0580 _{s22} _{ms} _{41}$ Q: 9

Question	Answer	Marks	Partial Marks
(a)	$x^2 - x - 30[=0]$	В3	M1 for $(2x+1)(x-1)-x^2 = 29$ oe B1 for $(2x+1)(x-1) = 2x^2 - 2x + x - 1$ oe soi
	(x-6)(x+5) oe	M1	or correct factors for <i>their</i> 3 term quadratic equation or for correct substitution into quadratic formula or correctly completing the square for <i>their</i> 3 term quadratic equation
	x=6 cao	B1	
	12 or $2 \times their x$ evaluated or $k = 2x$ stated	B1 FT	
(b)(i)	$(y+1)^3 - y^3 = 5$ oe	M1	
	$(y+1)^3 = y^3 + 3y^2 + 3y + 1$ soi	B2	B1 for $(y+1)^2 = y^2 + y + y + 1$ oe soi
	Completion to $3y^2 + 3y - 4 = 0$	A1	With no errors or omissions
(b)(ii)	$\frac{-3 \pm \sqrt{3^2 - 4(3)(-4)}}{2 \times 3}$	B2	or B1 for $\sqrt{3^2 - 4(3)(-4)}$ or for $\frac{-3 + }{2 \times 3}$ or $\frac{-3 - }{2 \times 3}$
	0.44	B2	B1 for 0.758 or 0.7583

AcelGCSE

39. 0580_s22_ms_42 Q: 8

Question	Answer	Marks	Partial Marks
(a)	$\frac{1}{2}$ or 0.5 oe	2	M1 for $10-3=11p+3p$ oe or better
(b)	$[m=]\frac{2k}{c^2-g}$ oe final answer	3	M1 for correctly isolating <i>m</i> terms M1 for correctly factorising M1 for dividing by a bracket with two terms to the final answer Maximum mark M2 if final answer incorrect
(c)	0 4.5 oe	5	B4 for $2x^2 - 9x = 0$ or $9x - 2x^2 = 0$ or better OR M2 for $(2x+3)+4(x-3)=(x-3)(2x+3)$ or better or M1 for $(2x+3)+4(x-3)$ seen oe or common denominator $(x-3)(2x+3)$ oe B1 for $2x^2 - 6x + 3x - 9$ or better seen
(d)	$y^2 - 10y + 21[= 0]$ or $x^2 - 4x - 12[= 0]$	M2	M1 for $y^2 + 5(12 - 2y) = 39$ oe or $5x + \frac{(12 - x)^2}{2^2} = 39$ seen oe
	(y-3)(y-7) = 0 or $(x+2)(x-6) = 0$	M1	or for correct factors for <i>their</i> 3– term quadratic equation or for correct substitution into quadratic formula or correctly completing the square for <i>their</i> 3– term quadratic equation
	x = -2 y = 7 $x = 6 y = 3$	B2	B1 for $x = -2$, $x = 6$ or for $y = 7$, $y = 3$ or for one correct pair of x and y values
(e)	$2x^3 + x^2 - 54x + 72 $ final answer	, Cra ₃ f	B2 correct expansion of three brackets unsimplified or for final answer of correct form with 3 out of 4 terms correct
			or B1 correct expansion of two brackets with at least three terms out of four correct

 $40.\ 0580_s22_ms_42 \quad Q:10$

Question	Answer	Marks	Partial Marks
(a)	1, 2, 3	2	M1 for $15-8 > 5n-3n$ oe
			If 0 scored, B1 for 2 correct answers and no others or 3 correct answers with one extra value
(b)(i)	$10y + 8x \le 80$ oe final answer $x > 4$ oe final answer $2y > x - 4$ oe final answer	3	B1 for each If 0 scored, SC1 for $10y + 8x < 80$ oe final answer and $x \ge 4$ oe final answer and $2y \ge x - 4$ oe final answer
(b)(ii)	23 final answer	2	M1 for 7 and 2 selected soi

41. 0580_s22_ms_42 Q: 12

Question	Answer	Marks	Partial Marks
(a)	$3x^2 - 2kx$	M2	M1 for $3x^2$ or $-2kx$
	their $\frac{dy}{dx} = 6$	M1	Dep on at least M1 for derivative
	$x = 2$ substituted in their $\frac{dy}{dx}$	M1	Dep on at least M1 for derivative
	Correct working leading to 1.5 oe	A1	A0 if any errors in working leading to 1.5
(b)	(0,1)(1,0.5)	4	B3 for $x = 0$ and $x = 1$ or for $(1, 0.5)$ OR M1 for <i>their</i> $\frac{dy}{dx} = 0$ B1 for $3x^2 - 3x$ oe or better
(c)	correct sketch	2	with max on positive <i>y</i> -axis and min in 1st quadrant B1 for positive cubic or for graph with one max which is on pos <i>y</i> -axis and one min which is in 1st quadrant

42. 0580_s22_ms_43 Q: 3

Question	Answer	Marks	Partial Marks
(a)(i)(a)	187 or 186.7 to 186.8 or 186 \(\frac{42}{53}\)	atteq	With Passion
(a)(i)(b)	2:7:42 cao	2	B1 for 106 : 371 : 2226 or any equivalent ratio
			If 0 scored, SC1 for 2:7:42 in the wrong order
(a)(ii)	33.3 or 33.28 to 33.29	2	M1 for $\frac{2967 - 2226}{2226}$ [× 100] oe or $\frac{2967}{2226}$ × 100 [- 100] oe

Question	Answer	Marks	Partial Marks
(a)(iii)	1706 cao nfww	3	B2 for 1705 to 1706.0 or 1710 or M1 for $\left(1 + \frac{30.48}{100}\right)x = 2226$ oe or better If 0 or M1 scored, SC1 for rounding <i>their</i> decimal answer seen to nearest integer
(b)	3897	5	B1 for $a = 2000$ M2 for $[b =]\sqrt[3]{\frac{2662}{2000}}$ or M1 for $2662 = 2000b^3$ M1 for their $2000 \times \left(\sqrt[3]{\frac{2662}{their}}\right)^7$ or for their $a \times (their\ b)^7$ provided their a and their b are clearly identified in the working If 0 or M1 scored, SC1 for rounding their decimal answer seen to nearest integer.

$43.\ 0580_s22_ms_43 \quad Q:6$

Question	Answer	Marks	Partial Marks
(a)	5b-2a final answer		B1 for $5b$ or $-2a$ in final answer or for $5b-2a$ seen
(b)	6x - 23 final answer nfww	2	M1 for $4x - 20$ or $-3 + 2x$

Question	Answer	Marks	Partial Marks
(c)	$\frac{35-x}{2x(x-5)} \text{ or } \frac{35-x}{2x^2-10x} \text{ oe final answer}$ nfww	3	B1 for $3(2x) - 7(x - 5)$ or better isw B1 for $2x(x - 5)$ as common denominator isw, allow expanded
(d)	Acel	3	M1 for $13 - 4x = 18 - 3x$ oe or $\frac{-4x}{3} + x = 6 - \frac{13}{3}$ oe M1FT for $-4x + 3x = 18 - 13$ oe or for $\frac{-x}{3} = \frac{5}{3}$
(e)	$[x=]$ $\frac{5p}{y+10}$ oe final answer 1000, C	aft e o	M1 for correctly clearing the x from the denominator M1 for correctly expanding the brackets or (dealing with the 5 correctly throughout) M1 for correctly isolating terms in x M1 for correctly factorising and dividing by the bracket Max 3 marks if answer is incorrect

$44.\ 0580_s22_ms_43$ Q: 9

Question	Answer	Marks	Partial Marks
(a)	Correct sketch of negative cubic crossing the x-axis at -3, -1 and 3 and crossing the y-axis at 9	4	B1 for any negative cubic shape with two turning points B2 for three intercepts only with x-axis labelled at - 3, -1 and 3 or B1 for one or two correctly labelled x-intercepts B1 for intercept with y-axis labelled at 9 If no graph drawn, SC1 for all four intercepts labelled on axes.
(b)(i)	$3-x+3x-x^{2} \text{ or better}$ or $3+x+3x+x^{2} \text{ or better}$ or $9 [-3x+3x]-x^{2}$	M1	At least 3 of the four terms correct or for the correct expansion of all three brackets with all 8 terms correct
	Correct completion to $[y =] 9 + 9x - x^2 - x^3$	A1	with no errors or omissions seen

Question	Answer	Marks	Partial Marks
(b)(ii)	$9 - 2x - 3x^2 = 0$ oe	В3	B2 for $9 - 2x - 3x^2$ or B1 for two correct terms M1 for <i>their</i> derivative = 0 or stating $\frac{dy}{dx} = 0$
	$\frac{2\pm\sqrt{(-2)^2-4\times-3\times9}}{2\times-3} \text{ oe}$ OR	В2	FT their derivative B1FT for $\sqrt{(-2)^2 - 4(-3)(9)}$ or better or for $\frac{-(-2) + \sqrt{q}}{2}$ or $\frac{-(-2) - \sqrt{q}}{2}$
	$-\frac{1}{3} \pm \sqrt{\frac{9}{3} + \left(\frac{1}{3}\right)^2} \text{oe}$		OR $2 \times -3 \qquad 2 \times -3$ B1 for $\left(x + \frac{1}{3}\right)^2$
	-2.10 and 1.43 final answer Paper Perfection, Cra	B2 afted	B1 for each or for answers -2.1 or -2.097 and 1.4 or 1.430 to 1.431 or SC1 for -2.097 and 1.43[0] to 1.431 seen in working or for -1.43 and 2.10 as final answer
(b)(iii)	[a=]-6 [b=] 17	3	B2 for either a correct or b correct or for $[a=]-5.04$ or -5.049 to -5.05 and $[b=]$ 16.9 seen or M1 for substitution of one of <i>their</i> solutions into $9 + 9x - x^2 - x^3$ oe or SC1 for reversed answers, $a = 17$, $b = -6$

$45.\ 0580 \ w22 \ ms_41 \ Q: 3$

Question	Answer	Marks	Partial Marks
(a)	$-2 < x \le 4$ oe	1	
(b)(i)	$-3 \le x \le 3$ final answer	3	M2 for $-3 \le x < k$ or for $k \le x < 3$ or for $-6 \le 2x < 6$ or for $-\frac{3}{2} - \frac{3}{2} \le x < \frac{9}{2} - \frac{3}{2}$ or M1 for $-3 - 3 \le 2x < 9 - 3$ or for $-\frac{3}{2} \le x + \frac{3}{2} < \frac{9}{2}$ After 0 scored SC1 for $-3 \le x$ or for $x < 3$
(b)(ii)	-3, -2, -1, 0, 1, 2 final answer	2	FT their (i) as long as negative and positive values B1FT for one error or omission
(e)(i)	$\frac{36}{17}$ oe	4	B3 for $-15x-2x = 5+4-45$ or better OR B2 for $45-15x-2x-4=5$ oe OR M1 for correct removal of fraction or M1 for correct removal of brackets
(c)(ii)	-8	3	B2 for $5x - 3x = 9 - 25$ or better
			or M1 for $5(x + 5) = 3(x + 3)$ oe or better

46. $0580_w22_ms_41$ Q: 7

Question	Answer	Marks	Partial Marks
(a)(i)	4	1	
(a)(ii)	16	1	FT 2 ^{their 4}
(b)	3	1	
(c)	$\frac{1}{4}$ oe	2	M1 for $\frac{2}{x} = 2^3$ or better
(d)	$\frac{5-x}{2}$ oe final answer	2	M1 for $x = 5 - 2y$ or $y + 2x = 5$ oe
	Paper Perfection, C	rafte	or $\frac{y}{2} = \frac{5}{2} - x$ oe
(e)	$\frac{11x - x^2 + 2}{x}$ final answer	3	B2 for $\frac{x(10-x)+2+x}{x}$ oe single fraction or B1 for $x(10-x)+2+x$ oe or M1 for $10-x+\frac{2}{x}+1$
(f)	[a =] 1 [b =] -21 [c =] 100	4	B3 for $x^2 - 21x + 100$ OR M1 for $(10-x)^2 - (10-(10-x))$ oe or better B2 for $[(10-x)^2] = 100 - 10x - 10x + x^2$ or B1 for three out of four terms of $[(10-x)^2] = 100 - 10x - 10x + x^2$ correct
(g)	1024	2	M1 for $[x =]$ h(10) oe or better

47. 0580_w22_ms_41 Q: 9

Question	Answer	Marks	Partial Marks
(a)(i)	x(3x+4)+2(x-1)[=20]	М1	Correct expression with brackets unexpanded
	Leading to $3x^2 + 6x - 22 = 0$ with no errors or omissions	A1	Must see equated to 20 and brackets expanded first to award A1
(a)(ii)	$\frac{-6 \pm \sqrt{6^2 - 4(3)(-22)}}{2.3} \text{oe}$ or for $= -1 \pm \sqrt{1 + \frac{22}{3}}$ oe	В2	B1 for $\sqrt{6^2 - 4(3)(-22)}$ or $\frac{-6 + \text{or} - \sqrt{k}}{2.3}$ or $(x+1)^2 = k$ oe
	–3.887 and 1.887 cao	В2	B1 for one correct answer or for answers -3.89 or -3.88 or -3.886 or -3.8868 to -3.8867 and 1.88 or 1.89 or 1.886 or 1.8867 to 1.8868 or correct answers seen in working or -1.887 and 3.887 answers
(a)(iii)	5.77 or 5.773 to 5.774	1	FTdep 2(positive $x + 1$) evaluated to 3 sig. fig. or more, dep on $x > 1$

Question	Answer	Marks	Partial Marks
(b)	$y^2 + 3y - 40[=0]$ oe	B4	Oe 3 term quadratic M3 for $15y - 20(y - 2) = y(y - 2)$ oe Or M2 for $\frac{15}{y - 2} - \frac{20}{y} = 1$ oe Or M1 for $H(y - 2) = 15$ or $hy = 20$ soi
	(y+8)(y-5) = 0 oe	В2	Strict FT a three term quadratic B1FT for $(y+a)(y+b)$ where $ab = -40$ or $a+b=3$ or $y(y-5)+8$ $(y-5)$ or y(y+8)-5(y+8)
	5	B1	

AcelGCSE

$48.\,0580_w22_ms_{41}_Q:10$ Perfection, Crafted With Passion

Question	Answer	Marks	Partial Marks
(a)(i)	4 or 5 or 7 or 8 or 9	1	
(a)(ii)	[a =] 3, [b =] 10	2	$\mathbf{B1}$ for each or for a and b transposed
(b)	$6x^5 - 30x^4$	В2	B1 for $6x^5$ or $-30x^4$
	their derivative $= 0$.	М1	
	(0, 0) and (5, -3125)	В2	B1 for $(5, -3125)$ or for $x = 0$ and $x = 5$

$49.\ 0580_w22_ms_42 \quad Q{:}\ 1$

Question	Answer	Marks	Partial Marks
(a)(i)	75	2	M1 for $\frac{45}{3}$ [× k] where k is 1, 5 or 8
(a)(ii)	2.332 oe	2	M1 for 2.65 [million] $\times \left(1 - \frac{12}{100}\right)$ oe or B1 for 0.318[million] seen
(a)(iii)	23 280 cao	2	M1 for $\frac{6.25}{100} \times x = 1455$ or better
(a)(iv)	1450 or 1449 to 1450	3	M2 for $1631 = k \left(1 + \frac{4}{100}\right)^3$ oe or better or B1 for $\left(1 + \frac{4}{100}\right)^3$ oe seen
			or M1 for $1631 = k \left(1 + \frac{4}{100}\right)^n$, $n > 0$ oe
(b)(i)	$\frac{7x}{2}$ oe	1	
(b)(ii)	$x+12$ $\frac{7x}{2}-26$ oe final answer	2	FT their (b)(i) B1 for $x + 12$ B1 for their $\frac{7x}{2} - 26$

Question	Answer	Marks	Partial Marks
(b)(iii)	$\frac{7x}{2} - 26 = 3(x + 12)$ oe		M1dep for their $\left \frac{x}{2} - 26 \right = 3 \times their (x + 12)$ oe
	leading to 124 Paper Perfection, C	rafte	M2dep for isolating x terms, dep on eqn with term in x and constant on each side and with a bracket or fraction.
			or M1dep for correctly removing brackets or dealing with fractions, dep on eqn with term in x and constant on each side and with a bracket or fraction.

50. 0580_w22_ms_42 Q: 2

Question	Answer	Marks	Partial Marks
(a)(i)	28	1	
(a)(ii)	Correct curve	4	B3FT for 9 or 10 correct points or B2FT for 7 or 8 correct points or B1FT for 5 or 6 correct points
(a)(iii)	2.5 to 2.8 8.2 to 8.5	2	B1 for each value
(b)(i)	$2x^2 + 4x(9-x)$ oe	M1	Accept the sum of individual areas if done in smaller parts
	$2x^2 + 36x - 4x^2 \text{ oe}$ Leading to $36x - 2x^2$	A1	With intermediate step shown and brackets removed with no errors or omissions
(b)(ii)	144	3	B1 for $x = 6$ identified from graph or using calculus
			M1 for $36 \times their6 - 2 \times (their 6)^2$

51. 0580 w 22 ms 42 Q: 6

Question	Answer	Marks	Partial Marks
(a)	$-1.5 \text{ or } -1\frac{1}{2} \text{ or } -\frac{3}{2}$	2	M1 for $4x = 9 - 15$ or $x + \frac{15}{4} = \frac{9}{4}$
(b)	(a-3)(a+3) final answer	1	
(c)	$\frac{8c}{3d}$ final answer	3	B2 for $\frac{8ac}{3ad}$ or $\frac{40c}{15d}$
			or $\frac{4}{1} \times \frac{2c}{3d}$ seen
			or for correct answer seen then spoiled
			or M1 for $\frac{4a}{5} \times \frac{10c}{3ad}$ or $\frac{8ac}{10c} \div \frac{3ad}{10c}$ oe
(d)	n+1 final answer	2	M1 for 5×5^n or 5^{n+1} seen
(e)	(2x-1)(2x+5) [= 0] oe	B2	M1 for $2x(2x+5) - [1](2x+5) [= 0]$
			or $2x(2x-1) + 5(2x-1) [= 0]$ or for $(2x+m)(2x+n) [= 0]$ with and $mn = -5$ or $n+m=4$
	$\frac{1}{2}$ or 0.5 and -2.5 or -2 $\frac{1}{2}$ or $-\frac{5}{2}$	B1	
(f)(i)	7	3	M1 for $y = k(x+3)^3$ or better
			M1 for $108 = their k(x+3)^3$
(f)(ii)	4	2	M1 for $\left(\frac{1}{2}\right)^2$ oe
	Acelo		or $\frac{k}{\frac{1}{4}d^2}$ oe seen or better

Question	Paper Perfection, C Answer	Marks	d With Passion Partial Marks
(g)	$2x^3 + 7x^2 - 9 \text{ final answer}$	3	B2 for correct expansion unsimplified or for simplified 4 term expression of correct form with 3 terms correct or B1 for one pair of brackets expanded with at least 3 terms out of 4 correct
(h)	6x + 4	2	B1 for $6x$ or 4 or $6x + 4$ with one extra term seen

$52.0580 w22 ms_43 Q: 2$

Question	Answer	Marks	Partial Marks
(a)(i)	p^{14} final answer	1	
(a)(ii)	6m ⁴ final answer	2	B1 for $6m^k$ or km^4 in final answer or correct answer seen and spoilt
(a)(iii)	$\frac{4}{3x^3y^9} \text{ or } \frac{4x^{-3}y^{-9}}{3} \text{ final answer}$	3	B2 for correct answer seen and spoilt or 2 correct elements in final answer or B1 for one of $\frac{4}{3}$ or $\frac{3}{4}$ oe or x^3 or y^9 seen
(b)	3, 12, 27	2	B1 for 12 or 27
(c)(i)	3n + 10 oe final answer	2	B1 for $3n + k$ oe or $jn + 10$ oe $(j \neq 0)$ or for correct expression shown in working and then spoilt
(c)(ii)	$2n^3 + 1$ oe final answer	2	B1 for 3rd diff = 12 (both needed) or for cubic answer or for correct expression shown in working and then spoilt
(d)	38	3	M2 for $3x = 4 \times 23 + 22$ or M1 for $3x - 22 = 4 \times 23$ or for $\frac{3x}{4} = 23 + \frac{22}{4}$ oe
(e)	$ \frac{-8 \pm \sqrt{8^2 - 4(3)(-20)}}{2 \times 3} $ or $ \frac{-8}{2 \times 3} \pm \sqrt{\frac{8^2}{4 \times 3^2} - \frac{(-20)}{3}} $ or better	B2	B1 for $\sqrt{8^2 - 4(3)(-20)}$ oe or $\frac{-8 + \sqrt{q}}{2 \times 3}$ oe or $\frac{-8 - \sqrt{q}}{2 \times 3}$ oe or both
	-4.24, 1.57 final answers	B2	B1 for each If B0, SC1 for answers – 4.2 or –4.23 or –4.240 to – 4.239 and 1.6 or 1.572 to 1.573 or – 4.24 and 1.57 seen in working or for –1.57 and 4.24 as final answer

Paper Perfection, Crafted With Passion

Question	Answer	Marks	Partial Marks
(a)(i)	38	2	M1 for $5 \times 3^2 - 7$ oe
(a)(ii)	$[\pm]\sqrt{\frac{P+7}{5}}$ oe final answer	3	M1 for $P + 7 = 5k^2$ or $\frac{P}{5} = k^2 - \frac{7}{5}$ M1 for $k^2 = \dots$ FT their first step M1 for square root to final answer Max M2 for incorrect answer
(b)(i)	$x \geqslant -2.5$ final answer	2	M1 for $-4x \le 7 + 3$ or better
(b)(ii)	6-54-3-2-10123456	1	FT their inequality in (b)(i)
(c)(i)	x = 2 broken line	B1	
	y = 32 - x solid line	B1	
	2x + 3y = 72 solid line	B2	B1 for line passing through (0, 24) or (36, 0)
	Correct region indicated cao	B2	B1 for region satisfying 3 of the inequalities
(c)(ii)	(16, 16)	2	M1 for substitution into $2x + y$ for any integer point in <i>their</i> region
	Acel	5	CSE

Paper Perfection, Crafted With Passion

54. 0580_w22_ms_43 Q: 9

Question	Answer	Marks	Partial Marks
(a)(i)	Correct sketch of $3x - 4y = 12$ with $y = -3$ and $x = 4$ indicated on axes	2	B1 for line with positive gradient
	-3		
(a)(ii)	Correct sketch of $y = x^2 - 3x - 4$ with $(0, -4)$ indicated as y – intercept and $x = -1$ and $x = 4$ indicated as roots	4	B3 for correct sketch with one value omitted or incorrect or for a poor sketch with all 3 intercepts correct.
	Minimum in fourth quadrant, not at $x = 0$		or B2 for roots $x = -1$ and $x = 4$ soi with no extra roots or for correct shape with $y = -4$ indicated or B1 for correct shape or for $(x - 4)(x + 1)$ shown or for incorrect sketch with $(0, -4)$ indicated as y – intercept

AcelGCSE

Paper Perfection. Crafted With Passion

Question	Answer	Marks	Partial Marks
(a)(iii)	Correct sketch of $y = 6^x$ with y-intercept indicated at $(0, 1)$	2	B1 for increasing exponential graph seen on both sides of the y-axis.
(b)(i)	$8-4x^2[+0]$	2	B1 for two terms correct and one extra incorrect term or for one of two terms correct or for correct answer seen and spoilt
(b)(ii)	4	2	M1 for substitution of $x = -1$ into their (b)(i)
(b)(iii)	(3, -7) and (-3, 17)	5	B4 for $(3, -7)$ or $(-3, 17)$ or B3 for $x = \pm 3$ or M2 for $x^2 = 9$ or $k(x - 3)(x + 3) = 0$ oe or for correct method for solving <i>their</i> (b)(i) = -28 or M1 for <i>their</i> (b)(i) = -28

Paper Perfection, Crafted With Passion

55. 0580_m21_ms_42 Q: 6

	Answer	Mark	Partial Marks
(a)(i)	[a =] 4	2	B1 for [a =] 4
	[b=]-3 nfww		B1 for $[b =] - 3$ nfww
(a)(ii)	y = 4 oe	1	
(a)(iii)	y = -6x + 7 oe final answer	2	B1 for answer $-6x + 7$ or answers $y = -6x + c$ or $y = kx + 7$ $(k < 0)$
(b)(i)	2.25 2.67 3.5	3	B1 for each
(b)(ii)	correct curve	4	
		K	B3 FT for 7 or 8 points or B2 FT for 5 or 6 points or B1 FT for 3 or 4 points
(c)(i)	-0.78 to -0.72 and 0.55 to 0.59	2	B1 for each
(c)(ii)	$3x^3 - 9x^2 - 3x + 4 = 0$ final answer	4	B3FT for 3 out of 4 correct terms or for $bx^3 - 3bx^2 + (a - 1)x + 8 - 3a$ [= 0] oe or B2FT for 2 out of 4 correct terms or for 3 out of 4 terms from $bx^3 - 3bx^2 + (a - 1)x + 8 - 3a$ [= 0]
			or M1 for $1 + \frac{5}{3-x} = their \ 4 + (their(-3))x^2$ oe

Paper Perfection, Crafted With Passion

 $56.0580 m21 ms_42 Q: 9$

	Answer	Mark	Partial Marks
(a)(i)	(5a-b)(m+2p) final answer	2	M1 for $5a(m+2p)-b(m+2p)$ or $m(5a-b)+2p(5a-b)$ or B1 for correct answer seen
(a)(ii)	5(k+g)(3k+3g-4) final answer	2	M1 for correct partial factorisation by 5 or $(k+g)$ isw eg $5(3k^2+6kg+3g^2-4k-4g)$ or $5(3(k+g)^2-4(k+g))$ or $(k+g)(15(k+g)-20)$ or $(5k+5g)(3k+3g-4)$ or B1 for correct answer seen
(a)(iii)	$(2x-y^2)(2x+y^2)$ final answer	2	M1 for answer in form $(a + b) (a - b)$ or B1 for correct answer seen
(b)	$3x^3 - 10x^2 - x + 12$ final answer	3	B2 for correct unsimplified expansion or simplified expression with 3 terms correct in a 4-term expression of required form or B1 for correct expansion of two of the brackets with at least 3 terms correct
(c)	[a =] 11 [b =] 121	2	B1 for each

AcelGCSE

Paper Perfection, Crafted With Passion

57. 0580_m21_ms_42 Q: 11

	Answer	Mark	Partial Marks
(a)	$\frac{48}{x}$ final answer	1	Accept 48 ÷ x
(b)	their(a) $-\frac{60}{x+2} = 4$ oe	M1	FT <i>their</i> (a) provided expression in x
	48(x+2) - 60x = 4x(x+2) oe	M2	FT their 3 term eqn with algebraic denominators, x and $x + 2$, for M2 or M1 M1 for common denominator $x(x+2)$ oe seen
			or any two terms in a 3 term equation from $\pm 48 (x + 2)$, $\pm 60x$, $\pm 4x(x + 2)$ oe seen
	$48x + 96 - 60x = 4x^{2} + 8x \text{ oe}$ leading to $x^{2} + 5x - 24 = 0$	A1	With brackets expanded and no errors or omissions seen
(c)	(x-3)(x+8)	B2	B1 for $x(x+8) - 3(x+8)$ or $x(x-3) + 8(x-3)$ or $(x+a)(x+b) = 0$ where $ab = -24$ or $a+b = 5$ [a, b integers]
	3 and -8	B1	
(d)	12	1	

AcelGCSE

Paper Perfection. Crafted With Passion

58. $0580 _{s}21 _{ms}_{41}$ Q: 2

	Answer	Mark	Partial Marks
(a)	0.18 or $\frac{9}{50}$	1	
(b)	$1944 \times \frac{1000}{3600 \times 3600}$	M1	
	9 ÷ 0.15 = 60	M1	
(c)	240	1	ruled line to axis with point of contact at 240
(d)	6.9375	4	M2 for area = $\frac{1}{2}$ ×(130+240)×9 oe or M1 for one correct partial area M1dep for <i>their</i> total area ÷ 240

59. 0580_s21_ms_41 Q: 7

	Answer	Mark	Partial Marks
(a)	$\frac{x+5}{x+4}$ final answer	3	B1 for $(x-5)(x+5)$ B1 for $(x-5)(x+4)$
(b)	$\frac{2x^2 + 12x - 5}{x(x - 1)} \text{ or } \frac{2x^2 + 12x - 5}{x^2 - x}$ final answer	3	B1 for common denominator $x(x-1)$ oe B1 for $(x-1)(x+5) + x(x+8)$ or better
(c)(i)	$6x^2 - 8x$ final answer	Craź	B1 for each term in final answer or M1 for correct answer seen and spoilt

	Answer	Mark	Partial Marks
(c)(ii)	64	2	FT their (c)(i) correctly evaluated provided at least 2 terms but not the original equation M1 for substituting x = 4 into their (c)(i)
(c)(iii)	$(0, 6)$ $\left(\frac{4}{3}, \frac{98}{27}\right)$ oe	4	M1 for their derivative = 0 or $\frac{dy}{dx}$ = 0 soi B1 for $x = 0$ and $x = \frac{4}{3}$ M1dep for substituting one of their x values into $y = 2x^3 - 4x^2 + 6$ soi

60. $0580_s21_ms_41$ Q: 10

	Answer	Mark	Partial Marks
(a)	0.75 3 7 3 0.75	3	B2 for 4 or 3 correct or B1 for 2 correct

	Answer	Mark	Partial Marks
(b)	correct curve	Grafte	B3FT for 8 or 9 correct plots B2FT for 6 or 7 correct plots B1FT for 4or 5 correct plots
(c)	Accept any integer ≥ 8	1	
(d)	line $y = 4 - \frac{1}{2}x$ ruled	ВЗ	B2 for $[y=]4-\frac{1}{2}x$ identified or B1 for ruled line with gradient $-\frac{1}{2}$ or B1 for ruled line through $(0, 4)$ but not $y=4$
	0.2 to 0.3 4.2 to 4.3	B1	

$61.\ 0580_s21_ms_41 \quad Q: 12$

	Answer	Mark	Partial Marks
(a)	13	1	
(b)	4x - 3 final answer	2	M1 for $3-2(3-2x)$
(c)	_7 5	4	M1 for $x^2 + 2x - 35 = 0$ or $x^2 + 2x = 35$ M2 for $(x+7)(x-5)$ or $x(x-5) + 7(x-5)$ or $x(x+7) - 5(x+7)$ or M1 for $(x+a)(x+b)$ where a, b are integers with $ab = -35$ or $a+b=2$
(d)	$\frac{3-x}{2}$ oe final answer	2	M1 for a correct first step: x=3-2y or $y-3=-2x$, $2x=3-y$ or $\frac{y}{2} = \frac{3}{2} - x$
(e)	$32 - 54x + 37x^2 - 8x^3$ final answer	5	B4 for $27-36x-18x+24x^2+12x^2-8x^3+x^2+5$ oe OR B1 for $(3-2x)^3+x^2+5$ and B2 for expansion of the 3 brackets, allow one error or B1 for correct expansion of 2 of the brackets with at least 3 terms correct

62. 0580_s21_ms_42 Q: 2

	Answer Paper Perfection.C	Mark	Partial Marks
(a)(i)	1, -0.5 oe	2	B1 for each
(a)(ii)	Correct curve	4	B3FT for 6 or 7 correct plots or B2FT for 4 or 5 correct plots or B1FT for 2 or 3 correct plots
(b)	y = 2.5 - 2x ruled	B2	B1 for $y = k - 2x$ or $y = px + 2.5$ ruled $(p \neq 0)$ or for $[y =]$ 2.5 - 2x oe identified
	1.3 to 1.4	B1	
(c)	-1	B1	
	y = -1	B1	FT their k (must be negative)

63. 0580_s21_ms_42 Q: 3

	Answer	Mark	Partial Marks
(a)(i)	7 ¹¹ cao	1	
(a)(ii)	7 ¹⁰ cao	1	
(a)(iii)	7 ² cao	1	If answers 11, 10 and 2 in (a) then allow SC1 in this part
(b)	$1000x^9y^{12}$ final answer	3	B2 for correct answer seen or answer of the form $1000x^9y^k$ or $1000x^ky^{12}$ or kx^9y^{12} or B1 for answer with one correct element in product or $(10x^3y^4)^{[3]}$ seen
(c)(i)	108	2	M1 for $[540 =] 2^2 [\times] 3^3 [\times] 5$ or B1 for 108 oe not in prime factor form e.g. $2^2 \times 3 \times 9$

	Answer	Mark	Partial Marks
(c)(ii)	30 240	2	M1 for $(540 \times 2^5 \times 3^3 \times 7) \div their$ (c)(i) oe or B1 for answer 30 240 oe not in prime factor form e.g. $2^5 \times 3^3 \times 35$
(c)(iii)	98	2	B1 for 592 704 seen or $2^6 \times 3^3 \times 7^3$ seen or 2×7^2 oe seen
(d)(i)	(x-7)(x+4) final answer	2	M1 for $x(x-7) + 4(x-7)$ or $x(x+4) - 7(x+4)$ or better or for $(x+a)(x+b)$ where $ab = -28$ or $a+b=-3$
(d)(ii)	(a+2b)(11a+14b) final answer	afte ₂ d	M1 for $(a + 2b) (7(a + 2b) + 4a)$ or $(a + pb)(11a + qb)$ where $pq = 28$ or $11p + q = 36$ If 0 scored, SC1 for $a + 2b (11a + 14b)$
(e)	$[y=]\frac{5x-1}{2}$ oe final answer	4	B2 for $2x - 1 = -2x + 2y - x$ oe or B1 for $9^x = 3^{2x}$ or better M1dep for correct rearrangement of <i>their</i> 5 term 'linear' equation in y and x to make y the subject

$64.\ 0580_s21_ms_42 \quad Q: 10$

Answer	Mark	Partial Marks
n^3 oe final ans	B2	B1 for 125 B1 for <i>n</i> ³
29 $6n-1$ oe final ans	В3	B1 for 29 B2 for $6n - 1$ oe or B1 for $6n + k$ or $an - 1$ ($a \ne 0$)
2^{n-3} oe final ans	B2	B1 for $2^{n[+k]}$ oe
25 $6n-1-2^{n-3}$ oe final ans OR 25.25 $-\frac{1}{24}n^3 + \frac{1}{8}n^2 + \frac{17}{3}n - 1$ oe final ans	В2	FT their 29 – 4 and their 6n – 1 – their 2 ^{n – 3} B1FT for each OR B1 for each

65. $0580_s21_ms_43$ Q: 2

	Answer	Mark	Partial Marks
(a)(i)	-1	2	M1 for $3 \times 2^2 - 13$ oe
(a)(ii)	$[\pm]\sqrt{\frac{y-t}{p}}$ oe final answer	3	M1 for correct rearrangement to isolate x^2 term M1 for correct division by p M1 for correct square root Incorrect answer scores a maximum of M2 If 0 scored, SC1 for a correctly rearranged formula with $p = 3$ and $t = -13$
	Paper Perfection, Cr	afted	substituted assion

	Answer	Mark	Partial Marks
(b)(i)	(5x-4)(3x+2) oe final answer	2	B1 for $(ax+b)(cx+d)$ where either $ac = 15$ and $bd = -8$ or $ad+bc = -2$ or $5x(3x+2) - 4(3x+2)$ or $3x(5x-4) + 2(5x-4)$ or correct factors seen and spoiled
(b)(ii)	$\frac{4}{5}$ oe and $-\frac{2}{3}$ oe	1	FT a factorised quadratic
(c)	x(x+4y)(x-4y) final answer	3	B2 for $(x^2 + 4xy)(x - 4y)$ or $(x+4y)(x^2 - 4xy)$ or answer in the form $x(a+b)(a-b)$ or correct answer seen and spoiled or B1 for $x(x^2 - 16y^2)$ oe or $(x+4y)(x-4y)$
(d)	$\frac{1-2a}{x}$ oe final answer	9/	B2 for $(2x-1)(1-2a)$ oe or B1 for $2x-1-2a(2x-1)$ or $2x(1-2a)-(1-2a)$ B1 for $x(2x-1)$

66. 0580_s21_ms_43 Q: 5

	Answer	Mark	Partial Marks
(a)	$\begin{bmatrix} x = 1 & 7 \\ y = 1 & 3 \end{bmatrix}$	2	B1 for each
(b)	[x=]0, [y=]2 $[x=]-3, [y=]5$ Paper Perfection, Cra	4 afted	B3 for $x = 0$ and $x = -3$ or B2 for $x^2 + 3x = 0$ or M1 for $2 - x = x^2 + 2x + 2$ If 0 scored award B1 for $x = 0$, $y = 2$ or $x = -3$, $y = 5$ from no/incorrect working ALTERNATIVE B3 for $y = 2$ and $y = 5$ or B2 for $y^2 - 7y + 10 = 0$ or M1 for $y = (2 - y)^2 + 2(2 - y) + 2$ If 0 scored award B1 for $x = 0$, $y = 2$ or $x = -3$, $y = 5$ from no/incorrect working

67. $0580_s21_ms_43$ Q: 7

	Answer	Mark	Partial Marks
(a)	$-2 \le x \le 1$	2	$\mathbf{B1} \text{ for } -2 \le x \text{ or } x \le 1$
(b)(i)	$\left(x+2\right)^2-3$	2	M1 for $(x+2)^2 + k$
(b)(ii)	$\left(x+2\right)^2=3$	M1	FTdep their (b)(i) for $k < 0$
	-3.73 or -3.732 and -0.268 or -0.2679	B1	
(b)(iii)	(-2, -3)	2	FT their $(x+2)^2 - 3$ B1 for each coordinate
(b)(iv)	Correct sketch	2	Parabola with minimum point in correct quadrant and both <i>x</i> -intercepts negative and positive <i>y</i> -intercept B1 for parabola with minimum point.

68. 0580_s21_ms_43 Q: 10

	Answer	Mark	Partial Marks
(a)(i)	4 4 6 6	1	CSE
(a)(ii)	3	1	
(a)(iii)	13 Paper Perfection, Cr	afte ₁ c	FT 5 × their (a)(i) – 7
(b)	$\frac{x+2}{3}$ final answer	2	M1 for $y + 2 = 3x$ or for $\frac{y}{3} = x - \frac{2}{3}$ or for $x = 3y - 2$
(c)	$9x^2 - 9x + 2$ final answer	3	M1 for $(3x-2)^2 + 3x - 2$ B1 for $(3x-2)^2 = 9x^2 - 6x - 6x + 4$
(d)	2x + 1	1	
(e)(i)	81	1	
(e)(ii)	x	1	Not $y = x$

69. $0580_s21_ms_43$ Q: 11

	Answer	Mark	Partial Marks
(a)(i)	-5	1	
(a)(ii)	Subtract 4 oe	1	
(a)(iii)	15-4n oe final answer	2	B1 for $k - 4n$ or $15 - jn$ $j \neq 0$
(b)(i)	$\frac{1}{21}$ or equivalent fraction	2	B1 for $\frac{12}{7}$ and $\frac{10}{6}$
(b)(ii)	$n = \frac{3}{5} \text{ oe}$ or $2n \geqslant n + 1 \text{ but } 3 < 4.$	M2	M1 for $\frac{3}{4} = \frac{2n}{n+1}$ oe or M1 for $2n > n+1$ but $3 < 4$
	No, n is not an integer oe	A1	
	or No, $\frac{3}{4}$ is less than 1, oe	97	

70. $0580 \text{_m} 20 \text{_ms} \text{_42}$ Q: 5

	Answer	Mark	Partial Marks
(a)	$\frac{10x}{(x-3)(x+2)}$ or $\frac{10x}{x^2-x-6}$	4	M1 for common denominator $(x-3)(x+2)$ isw
	final answer		M1 for $(x+3)(x+2)-(x-2)(x-3)$ isw
	$\Lambda \circ \circ I $		B1 for correct numerator in terms of x only

Paper Perfection. Crafted With Passion

	Answer	Mark	Partial Marks
(b)	14	2	M1 for $12 - \frac{k}{2} = 5$ or $2^{\frac{k}{2}} = \frac{2^{12}}{2^5}$ oe or $\frac{4096}{32}$ or $12 - 5$ or $2^{12} \div 2^{\frac{14}{2}}$ [= 32] seen
(c)	$2y^3 - 3y^2 - 23y + 12$ final answer	3	B2 for correct unsimplified expanded expression or for simplified four-term expression of correct form with 3 terms correct or B1 for correct expansion of 2 of the brackets with at least 3 terms correct
(d)	$[x=]\frac{3}{y-1}$ final answer	3	M1 for $xy = 3 + x$ M1 for $xy - x = 3$ or $x - \frac{x}{y} = \frac{3}{y}$ M1 for factorising and dividing

71. 0580_m20_ms_42 Q: 7

	Answer	Mark	Partial Marks
(a)	n-5+3n+10 > 105 or better	B1	
	n > 25 final answer	B2	M1 for $4n > 100$

	Answer	Mark	Partial Marks
(b)	Acel (Paper Perfection, C	Grafte	M1 for $y = \frac{k}{x^2}$ or better M1 for $[y =] \frac{their k}{5^2}$ OR with Passion
(c)(i)	6-2n oe final answer	2	M2 for $y \times 5^2 = 7.5 \times 4^2$ B1 for answer $6 - kn$ ($k \ne 0$) oe or answer $j - 2n$ oe or for correct expression shown in working and then spoilt
(c)(ii)	$2n^2 - 1$ oe final answer	2	B1 for 2nd diff = 4 or a quadratic expression or for correct expression shown in working and then spoilt

72. $0580 \text{_m} 20 \text{_ms} 42 \text{ Q: } 10$

	Answer	Mark	Partial Marks
(a)(i)	4x-13 final answer	1	
(a)(ii)	$25x^2$ final answer	1	
(b)	$\frac{x+1}{4} \text{ or } \frac{x}{4} + \frac{1}{4}$	2	M1 for correct first step $x = 4y - 1$ or $y+1=4x$ or $\frac{y}{4} = x - \frac{1}{4}$
(c)	0.6934 final answer	3	B2 for 0.69336 or $3^{-\frac{1}{3}}$ oe or 0.693 or M1 for $3^{-3^{-x}}$ oe
(d)(i)	$(3x-2)^2-3^{-(-3)}$	M1	
	$9x^{2} - 6x - 6x + 4 - 27 \text{ or}$ $9x^{2} - 12x + 4 - 27$ leading to $9x^{2} - 12x - 23$	A1	with no errors seen

	Answer	Mark	Partial Marks
(d)(ii)	$\frac{-(-12) \pm \sqrt{(-12)^2 - 4(9)(-23)}}{2 \times 9}$ or better	В2	B1 for $\sqrt{(-12)^2 - 4(9)(-23)}$ oe or $\frac{-(-12) + \sqrt{q}}{2 \times 9}$ oe or $\frac{-(-12) - \sqrt{q}}{2 \times 9}$ oe or both
	- 1.07, 2.40 final answers	B2	B1 for each If B0, SC1 for answers – 1.1 or –1.06 or –1.065 to – 1.065 and 2.4 or 2.39 or 2.398 to 2.398 or – 1.07 and 2.40 seen in working or for –2.40 and 1.07 as final answer
(e)	-5 final answer erfection, C	raft ₂	M1 for $243 = 3^{-x}$

73. $0580 \text{_m} 20 \text{_ms} 42$ Q: 11

	Answer	Mark	Partial Marks
(a)	(1, 2) (-1, 6)	5	B2 for [derivative oe =] $3x^2 - 3$ or B1 for [derivative oe =] $3x^2$ or $f(x) - 3$
			M1 for <i>their</i> derivative = 0
			or recognition of $\frac{dy}{dx} = 0$ oe
			B1 for $[x =]-1$, 1 or for one coordinate pair
(b)	(1, 2) minimum with reason	3	Reasons could be e.g.
	(-1, 6) maximum with reason	(9/	a reasonable sketch correct use of 2^{nd} derivative = $6x = 6$, $6 > 0$, so $(1, 2)$ minimum oe 2^{nd} derivative = $6x = -6$, $-6 < 0$ so $(-1, 6)$ maximum oe, or finds gradient on each side of both correct stationary points with correct conclusion B2 for 1 correct with reason or M1 for showing $[2^{nd}$ derivative = $]6x$ or gradients for one value on either side of one correct stationary point or for reasonable sketch of cubic

74. 0580_p20_ms_40 Q: 7

	Answer	Mark	Partial Marks
(a)	2	2	M1 for $2x + 1 = 1 + 4$
(b)	$\frac{x-1}{2}$ oe final answer	2	M1 for $y - 1 = 2x$ or $\frac{y}{2} = x + \frac{1}{2}$ or $x = 2y + 1$
(c)	$4x^2+4x+5$ final answer Paper Perfection, Crafted	3 \/\ t	M1 for $(2x + 1)^2 + 4$ and B1 for $[(2x + 1)^2 =]4x^2 + 2x + 2x + 1$ or better
(d)	$\sqrt{2}$ or 1.41 or 1.414	1	
(e)	-1	1	

75. 0580_p20_ms_40 Q: 11

	Answer	Mark	Partial Marks
(a)	(0, 16) (4, -16)	6	M1 for $3x^2$ or $12x$ A1 correct $3x^2 - 12x$ B1 setting their $dy/dx = 0$ M1 for factorising their dy/dx A1 $x = 0$ and $x = 4$ A1 $(0, 16)$ and $(4, -16)$
(b)	(0, 16) maximum with correct reason (4, -16) minimum with correct reason	3	B2 for both correct with no/one reason or B1 for one correct (with no reasons) or M1 correct attempt to find e.g. second derivative or gradients

76. 0580_s20_ms_41 Q: 3

	Answer	Mark	Partial Marks
(a)	75.6	2	M1 for $5.2 \times 7 + \frac{1}{2} \times 1.6 \times 7^2$
(b)(i)	2a - 3b final answer	2	B1 for answer $2a + kb$ or $ka - 3b$ or for $2a - 3b$ seen in working
(b)(ii)	$\frac{3}{4}$	2	B1 for $\frac{45x}{60x}$ oe single fraction
(c)(i)	-5	1	
(c)(ii)	$-0.25 \text{ or } -\frac{1}{4}$	3	M1 for $20 - 12x = 23$ or for $5 - 3x = \frac{23}{4}$ M1 for correct completion to $ax = b$ FT their first step
(d)	$9x^6$	2	B1 for $9x^k$ or kx^6
(e)	$6x^2 - 7xy - 5y^2$	2	M1 for 3 terms out of 4 from $6x^2 - 10xy + 3xy - 5y^2$

77. 0580_s20_ms_41 Q: 6

	Answer	Mark	Partial Marks
(a)	$y \geqslant x$ oe	1	
(b)	$2.25x + 1.5y \le 22.5$ oe	M1	
	One step shown to $3x + 2y \le 30$	A1	CSE
(c)	y = 10 ruled	1	Broken line
	3x + 2y = 30 ruled	C 1 82	Solid line B1 for line passing through (0, 15) or (10, 0)
	y = x ruled	B1	Solid line
	Correct region indicated	B1	
(d)	412	2	M1 for (4, 9) identified or for evaluation $40x + 28y$ for an integer point in the region ($x > 0$ and $y > 0$)

78. 0580_s20_ms_42 Q: 6

	Answer	Mark	Partial Marks
(a)	256	1	
(b)	8	2	M1 for $3(x^2 + 1) + 2$ or for $3(2) + 2$
(c)	$9x^2 + 12x + 5$	3	M1 for $(3x + 2)^2 + 1$ B1 for $[(3x + 2)^2 =]9x^2 + 6x + 6x + 4$ oe
(d)	16	2	M1 for $3x + 2 = 7^2 + 1$ or better
(e)	$\frac{x-2}{3}$ oe final answer	2	M1 for $x = 3y + 2$ or for $y - 2 = 3x$ or for $\frac{y}{3} = x + \frac{2}{3}$
(f)	$\frac{4x^2 + 2x + 1}{3x + 2} \text{final answer}$	3	B1 for $x^2 + 1 + x(3x + 2)$ or better seen M1 for common denominator $3x + 2$
(g)	16	1	

79. 0580_s20_ms_42 Q: 10

	Answer	Mark	Partial Marks
(a)(i)	5	2	M1 for $(-1)^4 - 4(-1)^3$
(a)(ii)	(0, 0) and (3, –27)	6	B2 for $4x^3 - 12x^2$ [= 0] or B1 for $4x^3$ or $12x^2$
	Acel Paper Perfection	G.Craf	M1 for derivative = 0 or their derivative = 0 M1 for $4x^2(x-3)[=0]$ B1 for $[x=] 0$ and $[x=] 3$ or $[y=] 0$ and $[y=] -27$ or for one correct coordinate pair
(b)	[p =] 11 $[q =] 5$	2	B1 for each or M1 for $\frac{dy}{dx} = px^{p-1} + 2qx^{q-1}$

80. 0580_s20_ms_43 Q: 4

			Answer	Mark	Partial Marks
(a)	$m \ge 3.4$ oe	final answer		M1 for $12 + 5 \le 8m - 3m$ or better or $3m - 8m \le -5 - 12$ or better

	Answer	Mark	Partial Marks
(b)	x = -0.75 oe	3	M1 for $15(2x+5)=14(3-x)$ B1 for $30x+75=42-14x$ or better
(c)	$3x^{2} - 16x - 35[=0] \text{ or}$ $3y^{2} - 8y - 51[=0]$	М3	M1 for $x^2 + 2(4-x)^2 = 67$ or $(4-y)^2 + 2y^2 = 67$ seen B1 for $16-8x+x^2$ or $16-8y+y^2$
	(3x+5)(x-7) [= 0] or $(3y-17)(y+3)[= 0]$	M1	or for correct factors for <i>their</i> equation or for correct use of quadratic formula or completing the square for <i>their</i> equation
	$x = 7, y = -3$ $x = -\frac{5}{3}, y = 5\frac{2}{3}$	B2	B1 for $x = 7$, $x = -\frac{5}{3}$ or for $y = -3$, $y = 5\frac{2}{3}$ or for a correct pair of x and y values

81. 0580_s20_ms_43 Q: 11

	Answer	Mark	Partial Marks
(a)	4	1	
(b)	52	2	M1 for f(8) seen or $7 \times \frac{2x}{x-3} - 4$
(c)	$7x^2 - 4$	1	
(d)	$\frac{7x^2 - 21x + 12}{2(x - 3)} \text{ or } \frac{7x^2 - 21x + 12}{2x - 6}$ final answer	3	M1 for $(7x-4)(x-3)+2\times 2x$ B1 for denominator $2(x-3)$ or $2x-6$
(e)	-3 Paper Perfection,	Cra ½ t	M1 for $7x+14-4=-11$
(f)	[p =] 0 and $[p =] 1$	2	B1 for each

82. 0580_s20_ms_43 Q: 12

	Answer	Mark	Partial Marks
(a)(i)	$\left(-\frac{1}{2},4\right)$ and $\left(\frac{1}{2},2\right)$	5	B2 for $12x^2 - 3[=0]$ or B1 for $12x^2$ or -3 M1 for their derivative = 0 or $dy/dx = 0$ B1 for $[x =] -\frac{1}{2}$ and $\frac{1}{2}$ or one coordinate pair correct

	Answer	Mark	Partial Marks
(a)(ii)	$\left(-\frac{1}{2}, 4\right)$ Max with reason $\left(\frac{1}{2}, 2\right)$ Min with reason	3	B2 for one correct with reason or M1 for correct attempt to find e.g. 2nd derivative/gradients/sketch
(b)	line $y = x + 3$ ruled	M2	B1 for $[y =]x + 3$ identified or rules $y = x + k$ or $y = px + 3$
	-0.7 to -0.8 2.7 to 2.8	A1	

83. 0580 w 20 ms 41 Q: 5

	Answer	Mark	Partial Marks
(a)(i)	2.7 to 2.8	1	

AcelGCSE

Paper Perfection, Crafted With Passion

	Answer	Mark	Partial Marks
(a)(ii)	tangent ruled at $x = -2$	B1	
	6 to 10	2	dep on B1 or a close attempt at tangent at $x = -2$
			or M1 for rise/run for <i>their</i> tangent, or close attempt, at any point Must see correct or implied calculation from a drawn tangent
			After M0 , SC1 for gradient of tangent (or close attempt) in range embedded in $y = mx + c$
(a)(iii)	y = 2x - 2 ruled and $x = -2.9$ to -2.8 cao	3	B2 for correct ruled line
	and x = 2.5 to = 2.6 Cao		or B1 for short line or for freehand line or broken line or ruled line with gradient 2 or with y-intercept at -2 (but not $y = -2$)
(b)	A (4, 17) B (-1.5, 0.5)	5	B4 for $(-1.5, 0.5)$ and $(4, 17)$, or for $x = 4$ and $x = -1.5$ OR
			B3 for A(4, 17) or B(-1.5, 0.5)
			OR
		/ V	M1 for $2x^2 - 2x - 7 = 3x + 5$ oe
			AND either
	Acel	G	M2 for $(2x + 3)(x - 4)$ or M1 for $2x(x - 4) + 3(x - 4)$ or $x(2x + 3) - 4(2x + 3)$ or $(2x + c)(x + d)$
	Paper Perfection, C	rafte	where $cd = -12$ or $c + 2d = -5$ [c and d are integers]
			OR
			M2 for
			$\frac{-their b \pm \sqrt{(their b)^2 - 4(their a)(their c)}}{2(their a)}$
			or M1 for $\sqrt{(their b)^2 - 4(their a)(their c)}$
			or for $p = -their b$, $r = 2(their a)$ if in the form $\frac{p + \sqrt{q}}{r}$ or $\frac{p - \sqrt{q}}{r}$

84. 0580_w20_ms_41 Q: 7

	Answer	Mark	Partial Marks
(a)	25 36 10 15 35 51	2	B1 for 3, 4 or 5 correct
(b)	n^2	1	
(c)(i)	92	1	
(c)(ii)	$\frac{1}{2}(n^2-n)$ oe	2	M1 for $\frac{1}{2}(3n^2 - n) - n^2$ oe
			or for final quadratic answer with $\frac{1}{2}n^2$ oe
			or $-\frac{1}{2}n^2$ oe but not both

	Answer	Mark	Partial Marks
(d)	$a=\frac{1}{2}, b=\frac{1}{2}$	5	B2 for 2 correct equations eg $a+b=1$, $8a+4b=6$ or B1 for 1 correct equation
			B2 for one correct value or M1 (dep on at least B1) for correctly eliminating one variable from two linear equations in a and b
			OR
	Acel	G	B2 for $a = \frac{1}{2}$ or B1 for $6a = 3$ or for 3^{rd} difference = 3
	Paper Perfection,	Craft	1
			or M1 for substituting <i>their</i> a into a correct equation of first differences

85. $0580_{\mathrm{w}20_{\mathrm{ms}}41}$ Q: 8

	Answer	Mark	Partial Marks
(a)	ab(3a - b) final answer	2	B1 for $a(3ab - b^2)$ or $b(3a^2 - ab)$ or $ab(3a - b)$ seen
(b)	x > 7.5 final answer	2	B1 for $12+3 < 5x - 3x$ oe
(c)	$27x^6y^{12}$	2	B1 for two of 27, x^6 and y^{12} correct
(d)	0.5 or $\frac{1}{2}$	3	M2 for $4 = 6x + 2x$ or better
	2		or M1 for $2(2-x) = 6x$ oe
(e)	$2x^3 + 5x^2 - 23x + 10 $ final answer	3	B2 for correct expansion of three brackets unsimplified
			B1 for correct expansion of two brackets with at least 3 terms correct
(f)(i)	$200\left(1 + \frac{r}{100}\right)^2 = 206.46 \text{ oe}$	M1	7
	$1 + \frac{2r}{100} + \frac{r^2}{100^2} \text{oe}$	M1	
	$r^2 + 200r - 323 = 0$	A1	Correct solution reached with no errors or omissions seen If 0 scored, SC1 for $200(n)^2 = 206.46$

	Answer	Mark	Partial Marks
(f)(ii)	$\frac{-200 + \sqrt{200^2 - 4(1)(-323)}}{\text{Pap 2} \times 1 \text{ Perfection, C}}$	rafte	B1 for $\sqrt{200^2 - 4(1)(-323)}$ or $(r + 100)^2$ With Passion B1 for $\frac{-200 + \sqrt{q}}{2 \times 1}$ or $r = \sqrt{323 + 100^2} - 100$ OR B2 for $100 \left(\sqrt{\frac{206.46}{200}} - 1 \right)$ or B1 for $\sqrt{\frac{206.46}{200}}$
	1.60 cao final answer	B1	

86. $0580 \text{_w} 20 \text{_ms} \text{_41}$ Q: 10

	Answer	Mark	Partial Marks
(a)(i)	A(-4, 0) B(1, 0) C(0, -4)	4	B3 for A and B correct Or B2 for B (-4, 0) and A (1, 0) Or B1 for $(x + 4)(x - 1)$ or for $\frac{-3 \pm \sqrt{3^2 - 4 \times 1 \times -4}}{2}$ oe and B1 for A or B correct B1 for C(0, -4) OR SC2 for -4, 1 and -4 in correct positions on
			the graph
(a)(ii)	$2x + 3$ [\pm 0] final answer	2	B1 for answer $2x + c$ or for $ax + 3$, $a \ne 0$ or for correct answer seen
(a)(iii)	y = 7x - 8 oe	3	B2 for answer $7x - 8$ OR M1 for [gradient =] $2(2) + 3$ FT <i>their</i> part (a)(ii) of the form $ax + b$ M1dep for substitution of $(2, 6)$ into $y = their mx + c$ oe
(b)(i)	Correct sketch 0 90 180 270 360	2 Craft	B1 for one correct section out of 4 OR B1 for two properties correct from • Crosses x-axis at (0, 0) (180, 0) and (360, 0) only • Correct curvature in each section of 90° • Asymptotes at x = 90 and x = 270
(b)(ii)	125.5 or 125.53 to 125.54 and 305.5 or 305.53 to 305.54	3	B2 for one correct angle or B1 for -54.5 or -54.46 or for 2 angles with a difference of 180.

87. 0580_w20_ms_42 Q: 5

	Answer	Mark	Partial Marks
(a)	1.48	3	B2 for $7x + 2 = 12.36$ or better or M1 for $3x + 2(2x + 1)$ [= 12.36] or better
(b)	1.75 or $1\frac{3}{4}$	3	B2 for $18x - 14x = 7$ or better or M1 for $18x = 7(2x + 1)$
(c)	[0].8 oe	3	B2 for $4(2x + 1) = 13x$ or M1 for $\frac{4}{x} = \frac{13}{2x+1}$ oe or correct equation to find number of cakes

	Answer	Mark	Partial Marks
(d)	$\frac{20}{x} + \frac{10}{2x+1} = 45$ oe	M2	B1 for $\frac{20}{x}$ seen or $\frac{10}{2x+1}$ seen
	$90x^2 - 5x - 20 = 0$ oe	B2	B1 for $\frac{20(2x+1)+10x}{x(2x+1)} = 45$ or better
	$\frac{(9x+4)(2x-1) [= 0] \text{ or for}}{2(18)}$ oe	M2	FT their 3-term quadratic M1 for factors that give two correct terms when expanded or for correct discriminant or correct $\frac{-b}{2a}$ provided quadratic formula is in correct form
	[0].5 or $\frac{1}{2}$ final answer	B1	
	Acei		CSE

 $_{88.\ 0580_w20_ms_42}$ $_{Q:7}$ r Perfection, Crafted With Passion

	Answer	Mark	Partial Marks
(a)	2, 4.5	2	B1 for each
(b)	Correct graph	4	B3 FT for 6 or 7 correct points FT their table or B2 FT for 4 or 5 correct points FT their table or B1 FT for 2 or 3 correct points FT their table

	Answer	Mark	Partial Marks
(c)(i)	-0.5 to -0.4	1	
(c)(ii)	y = 1 - x ruled and -1.9 to -1.75	2	M1 for $[y =] 1 - x$ or $\left[x^2 + \frac{1}{x} = \right] 1 - x$ soi or B1 for -1.9 to -1.75
(d)	Any integer ≥ 2	1	

89. 0580_w20_ms_42 Q: 10

	Answer	Mark	Partial Marks
(a)(i)	10	1	
(a)(ii)	-19	1	FT 1 – 2 their (a)(i)
(b)	$\frac{1-x}{2}$ oe final answer	2	M1 for $x = 1 - 2y$ or $y + 2x = 1$ or $\frac{y}{2} = \frac{1}{2} - x$ or $y - 1 = -2x$ or better
(c)	$\frac{1}{2}$ oe	1	
(d)	$4x^2 - 8x + 2$ final answer	4	M1 for $(1-2x)(1-2x) - (1-2(1-2x))$ or better B1 for $1-2x-2x+4x^2$ B1 for $-(1-2+4x)$ or better or $[+]$ 1 – 4x or for correct answer seen then spoiled
(e)	x final answer	1	CCE
(f)	3125	1	0 3 L
(g)	25 Paper Perfection, (Craf t	ed With Passion
(h)	-2	2	B1 for $\frac{1}{25}$ or 0.04

90. 0580_w20_ms_42 Q: 11

		Answer		Mark	Partial Marks
(a)	A: -3	17 – 4n	oe	_	B1 for -3 B2 for $17 - 4n$ oe or B1 for $k - 4n$ oe or $17 - pn$ oe, $p \ne 0$

	Answer	Mark	Partial Marks
	B: 124 $n^3 - 1$ oe	3	B1 for 124 B2 for $n^3 - 1$ oe or B1 for any cubic
	C: $\frac{11}{128}$ $\frac{n+6}{2^{n+2}}$ oe	4	$\frac{\mathbf{B1}}{128}$ for $\frac{1}{128}$
			$\mathbf{B3} \text{ for } \frac{n+6}{2^{n+2}} \text{ oe }$
			or B2 for 2^{n+2} oe seen or B1 for 2^k oe or $n+6$ seen
(b)	$\frac{p+1}{2q}$ oe	2	B1 for $p + 1$ or $2q$ oe

91. 0580_w20_ms_43 Q: 7

	Answer	Mark	Partial Marks
(a)(i)	(8-x)(3+x)	2	M1 for $8(3+x) - x(3+x)$ or $3(8-x) + x(8-x)$ or $(a-x)(b+x)$ where $ab = 24$ or $a-b = 5$

	Answer	Mark	Partial Marks
(a)(ii)	[a =] -3 [b =] 8 [c =] 24	3	FT their (a)(i) for a and b B1FT for each of a and b or both correct but reversed B1 for $[c=]$ 24
(a)(iii)	8 Paper Perfection, Cra	afted	M2 for $5-2x$ or M1 for $-2x$ or $5-kx$, $k \neq 0$
(b)(i)	Correct sketch: positive cubic shape and max on the y-axis or to the right of y-axis with one root at (-1, 0) and turning point at (3, 0) and y-intercept at (0, 9) all labelled	4	B1 for positive cubic shape with max on the y-axis or to the right of y-axis B1 for root at (-1, 0) B1 for turning point at (3, 0) B1 for y-intercept (0, 9) If 0 score SC1 for all three intercepts on axes identified
(b)(ii)	$x^3 - 5x^2 + 3x + 9 \text{final answer}$	3	B2 for correct expansion of three brackets unsimplified B1 for correct expansion of two brackets with at least 3 terms correct

	Answer	Mark	Partial Marks
(a)	2, 3, 4, 5	2	B1 for 3 correct and no extra or 4 correct and one extra or M1 for $1 \le x \le 5$
(b)(i)	3y(2y-5x)	2	B1 for $3(2y^2 - 5xy)$ or $y(6y - 15x)$ or for the correct answer seen and then spoiled

	Answer	Mark	Partial Marks
(b)(ii)	(y-3x)(y+3x)	2	B1 for $(y+3)(y-3)$
(c)	$\frac{4x+5}{(x-1)(2x+1)}$ or $\frac{4x+5}{2x^2-x-1}$ final answer	3	M1 for $3(2x+1)-2(x-1)$ oe isw M1 for $(x-1)(2x+1)$ oe isw
(d)	(1.74, 7.21 to 7.24) and (-3.74, -9.20 to -9.22) cao ACC Paper Perfection, Cr	afted	For the y values accept any value rounded to 2 decimal places in the given range B5 for $(1.74, 7.21 \text{ to } 7.24)$ or $(-3.74, -9.20 \text{ to } -9.22)$ or $x = 1.74$ and $x = -3.74$ OR M2 for $2x^2 + 4x - 13 = 0$ or $2y^2 + 4y - 133 = 0$ or M1 for $2x^2 + 7x - 11 = 3x + 2$ or $y = 2\left(\frac{y-2}{3}\right)^2 + 7\left(\frac{y-2}{3}\right) - 11$ AND AND AND AND AND AND AND AN

93. $0580 \text{_w} 20 \text{_ms} \text{_} 43$ Q: 10

	Answer	Mark	Partial Marks
(a)	-23	2	M1 for $4 - 3(3^x)$ oe soi
(b)	$\frac{4-x}{3}$ oe final answer		M1 for $x = 4 - 3y$ or $y + 3x = 4$ or $x + 3y = 4$ or $\frac{y}{-3} = \frac{4}{-3} + x$ oe or $\frac{x}{-3} = \frac{4}{-3} + y$ oe
(c)(i)	1 + 6x final answer	2	M1 for $4 - 3(1 - 2x)$

	Answer	Mark	Partial Marks
(c)(ii)	$ \begin{array}{ccc} 20 - 36x \\ \text{or } 4(5 - 9x) & \text{final answer} \end{array} $	4	B3 for $20 - 36x$ seen in working then spoiled
			OR M1 for $(4-3x)^2 + 4 - 3x - 9(x^2 + x)$ or better
			B1 for $[(4-3x)^2=]$ 16 - 12x - 12x + 9x ² or better
			B1 for answer $20 - kx$ or $k - 36x$ oe or answer $20 - 36x + kx^2$ $k \ne 0$
(d)	$-\frac{1}{2}$ oe	2	M1 for $(3^2)^{kx}$ or $9^{kx} = 9^{-\frac{1}{2}x}$ oe

94. 0580_w20_ms_43 Q: 11

	Answer Paper Porfection Cre	Mark	Partial Marks
A	24	B1	WILLII ASSIOII
	5n-1 oe	B2	B1 for $5n - k$ or $jn - 1$ oe $j \neq 0$
В	127	B1	
	$n^3 + 2$ oe	B2	$\mathbf{B1}$ for n^3 oe
С	256	B1	
	$4^{(n-1)}$ oe	B2	$\mathbf{B1}$ for 4^k oe

95. 0580_m19_ms_42 Q: 5

	Answer	Mark	Partial Marks
(a)	-2.1, 1.6, -1.7, 2.1	3	B2 for 3 correct or B1 for 2 correct
(b)	Fully correct curve	4	B3FT for 8 or 9 correct plots or B2FT for 6 or 7 correct plots or B1FT for 4 or 5 correct plots
(c)	line $y = \frac{1}{2}(1-x)$ ruled	M2	M1 for line with gradient $-\frac{1}{2}$ M1 for line through $(0, \frac{1}{2})$ but not $y = \frac{1}{2}$
	-2.15 to -2.01 -0.45 to -0.2 2.25 to 2.45	B2	B1 for two correct
(d)	number of intersections of <i>their</i> curve and the line $y = 1$	1	strict FT for their curve

96. 0580_m19_ms_42 Q: 8

	Answer	Mark	Partial Marks
(a)	-3	_1	
(b)	$\frac{12}{11}$ oe	2	M1 for $\frac{3}{\frac{3}{x+2}+2}$ soi
(c)	64x - 45 final answer	2	M1 for $8(8x-5)-5$ isw
(d)	$\frac{x+5}{8}$ oe final answer Paper Perfection, Cr	afted	M1 for a correct first step $y + 5 = 8x$, $\frac{y}{8} = x - \frac{5}{8}$ or $x = 8y - 5$
(e)	$\frac{8x^2 + 11x - 13}{x + 2}$ final answer	3	M1 for $(8x-5)(x+2)-3$ oe isw
			B1 for common denominator $(x+2)$

	Answer	Mark	Partial Marks
(f)(i)	$(8x-5)^2 + 6 = 19$	M1	
	$64x^2 - 40x - 40x + 25$	B1	
	$64x^2 - 40x - 40x + 25 + 6 = 19 \text{ oe}$ leading to $16x^2 - 20x + 3 = 0$	A1	with no errors and must show $(8x-5)^2 + 6 = 19$ with no omissions after this
(f)(ii)	$\frac{[]20 \pm \sqrt{([-]20)^2 - 4(16)(3)}}{2 \times 16} \text{ oe}$	2	B1 for $\sqrt{([-]20)^2 - 4(16)(3)}$ or better
			or B1 for $\frac{[]20 + \sqrt{q}}{2(16)}$ oe or
			$\frac{[]20 - \sqrt{q}}{2(16)}$
	0.17 and 1.08 final ans	2	B1 for each If 0 scored, SC1 for answer 0.2 and 1.1
		97	or answer – 0.17 and –1.08 or 0.174 and 1.075 to 1.076 seen or 0.17 and 1.08 seen in working

97. 0580_m19_ms_42 Q: 10

	Answer	Mark	Partial Marks
(a)	correctly equating one set of coefficients	M1	or making x or y the subject of one equation correctly
	correct method to eliminate one variable	M1	or substitution for x or y for their rearranged formula
	x = 7 $y = P_3$ aper Perfection, Cra	A2 afted \	A1 for one correct value If A0 scored, SC1 for 2 values satisfying one of the original equations or if no working shown, but 2 correct answers given
(b)	2	3	M1 for $y = \frac{k}{(x+3)^2}$ oe
			M1 for $y = \frac{their k}{(7+3)^2}$ oe
			M2 for $8(2+3)^2 = y(7+3)^2$ oe
(c)	x > -5 final answer	3	M1 for $3x - 6 < 7x + 14$
			M1 for their (-6) – their $14 < 7x - 3x$ oe

98. 0580_m19_ms_42 Q: 11

	Answer	Mark	Partial Marks
(a)(i)	77 243	2	B1 for each
(a)(ii)(a)	$2n^2 + 5$ oe	2	M1 for a quadratic expression as the answer or B1 for common 2nd difference of 4
(a)(ii)(b)	3^{n-1} oe	2	B1 for 3^k oe where k is a linear function of n
(b)(i)	21	1	
(b)(ii)	11	3	B2 for $(4n+45)(n-11)$ seen
			or B1 for $4n^2 + n + 3 = 498$ oe

99. 0580_s19_ms_41 Q: 2

	Answer	Mark	Partial Marks
(a)	2, 2, 6	3	B1 for each
(b)	Correct graph	4	B3FT for 10 or 11 correct plots or B2FT for 8 or 9 correct plots or B1FT for 6 or 7 correct plots
(c)	-3.3 to -3.1	1	FT their graph
(d)	y = -2x ruled	M1	or B1 for $y = -2x$ stated
	-2.6 to -2.45	A1	PGE
(e)	3 or 4 or 5	afted	FT their graph Allow more than one correct value

100. 0580_s19_ms_41 Q: 7

	Answer	Mark	Partial Marks
(a)(i)	1.991×10^3	4	B3 for 1991 or 1.99×10^3 or 1.991×10^3 or B2 for 1990 or 1991
			OR
			M1 for $104.3 \times 26.5 + \frac{1}{2} \times (-2.2) \times 26.5^2$
			oe B1 for <i>their</i> seen value correctly rounded
			to 4 sf B1 for <i>their</i> seen value correctly
			converted into standard form
(a)(ii)	$\frac{2(s-ut)}{t^2}$ oe final answer	3	M1 for correct multiplication by 2 oe M1 for correct rearrangement to isolate
	<i>t</i> ²		term with a
			M1 for correct division by t^2
			for 3 marks e.g. cannot have a fraction in
			denominator nor $\div t^2$ in numerator
(b)(i)	(2x+3)(x-1)-(x+1)(x-2)=62	M1	
	$2x^2 + 3x - 2x - 3$ oe	B1	
	or $x^2 + x - 2x - 2$ oe		
	$x^2 + 2x - 63 = 0$	A1	Established with no errors or omissions
(b)(ii)	(x+9)(x-7)	2	B1 for $(x+a)(x+b)$ where $ab = -63$ or
			a+b=2 or for $x(x-7)+9(x-7)$ or for
			of for $x(x-7)+9(x-7)$ of for $x(x+9)-7(x+9)$
(b)(iii)	20 / C	2	FT $2 \times their$ positive root + 6
	Paper Perfection, Cra	afted \	M1 for substituting <i>their</i> positive root into four lengths or for stating $2x + 6$

101. 0580_s19_ms_41 Q: 9

	Answer	Mark	Partial Marks
(a)	82	2	M1 for $(3^x)^2+1$ soi by $(3^2)^2+1$ or $g(9)$ isw
(b)	$\frac{x+2}{7}$ final answer	2	M1 for $y + 2 = 7x$ or $\frac{y}{7} = x - \frac{2}{7}$ or $x = 7y - 2$
(c)	[a =] 1, [b =] 2, [c =] 2	3	B2 for $x^4 + x^2 + x^2 + 1 + 1$ or M1 for $(x^2 + 1)^2 + 1$
(d)	$\frac{6}{7}$ oe	3	M2 for $7x - 2 = 4$ or M1 for $3^x = 81$ soi $f(x) = 4$ or for $3^{7x-2} = 81$ or better

102. $0580_s19_ms_42$ Q: 5

	Answer	Mark	Partial Marks
(a)	2.45, 0.25, - 0.25	3	B1 for each
(b)	Fully correct smooth curve	4	B3FT for 6 or 7 points or B2 FT for 4 or 5 points or B1 FT for 2 or 3 points
(c)	0.7 to 0.8	1	FT their curve
(d)(i)	Correct ruled line	2	M1 for good freehand, or ruled line with gradient -1.05 to -0.95 or ruled line through $(0, 2)$ but not line $y = 2$
	Acel	G	CSE

	Answer	Mark	Partial Marks
(d)(ii)	Both intersections of their (b) and their (d)(i)	2	Strict FT intersection of their (b) and their (d)(i) B1FT for one correct OR B2 for 0.27 to 0.28 and 2.38 to 2.39
(e)	Substitutes $x = \sqrt{2}$ into $\frac{1}{2x} - \frac{x}{4}$ OR Identifies $y = 0$ oe OR Correctly manipulates to a single fraction e.g. $\frac{2-x^2}{4x}$ oe seen	M1	
	Concludes 'read the graph at $y = 0$ ' oe OR Manipulates $0 = \frac{1}{2x} - \frac{x}{4}$ oe leading to $x^2 = 2$ OR States $\frac{2-x^2}{4x}$ oe = 0 leading to $x^2 = 2$	AI	

103. 0580_s19_ms $\boxed{42}$ Q:6r Perfection, Crafted With Passion

	Answer	Mark	Partial Marks
(a)	$x^2 + 4x - 21$ final answer	2	B1 for three of x^2 , +7x, -3x, -21
(b)(i)	$5q^2(3p^2-5q)$ final answer	2	B1 for $5(3p^2q^2 - 5q^3)$ or $q^2(15p^2 - 25q)$ or $q(15p^2q - 25q^2)$ or $5q(3p^2q - 5q^2)$ or for correct answer seen
(b)(ii)	(2g+5k)(2f+3h) final answer	2	B1 for $2g(2f+3h)+5k(2f+3h)$ or $2f(2g+5k)+3h(2g+5k)$ or for correct answer seen
(b)(iii)	(9k+m)(9k-m) final answer	2	M1 for $(9 + m)(9 - m)$ or for correct answer seen

	Answer	Mark	Partial Marks
(c)	5.5	4	M1 for $5 \times 3(x-4) + x + 2 = 5 \times 6$
			M1 for $15x - 60 + x + 2 = 30$ FT their first step or $3x - 12 + \frac{x+2}{5} = 6$
			If M0M0, SC1 for $3x - 12 + x + 2 = 30$ oe
			M1dep for $16x = 88$ FT <i>their</i> previous steps

 $104.\ 0580_s19_ms_42 \quad Q: 11$

	Answer	Mark	Partial Marks
(a)	40 54	4	B1 for each
	26 34		
(b)	$n^2 + 3n$ or $n(n+3)$ oe	2	B1 for a quadratic expression or for 2nd common difference 2 (at least 2 shown) or for 2 correct equations seen or for subtracting n^2
(c)	100	2	M1 for <i>their</i> (b) = 10300 seen
(d)	$[a =] \frac{1}{2} \text{ oe}$ and $[b =] \frac{5}{2} \text{ oe}$	2	B1 for each or M1 for one correct equation or for 2nd difference = 1 soi (at least 2 shown)
	2		

105. 0580_s19_ms_43 Q: 2

	Answer	Mark	Partial Marks
(a)	-10	2	M1 for $-17 - 3 = 7x - 5x$ oe or better
(b)	-1, 0, 1, 2 final answer	3	B2 for 3 correct values and no incorrect values or 4 correct values and one incorrect value or M2 for $-\frac{7}{4} < n \le 2$ oe or M1 for $-\frac{7}{4} < n \le k$ or $k < n \le 2$ oe
(c)(i)	a ⁹	1	·
(c)(ii)	$125x^3y^6$ final answer	2	B1 for 2 correct elements if in form kx^ny^m
(c)(iii)	$\frac{4y^{[1]}}{3x^4}$ final answer	3	B2 for $\left(\frac{3x^4}{4y^{[1]}}\right)^{[-1]}$ oe seen OR
		9	B1 for $3x^4$ or $4y^{[1]}$ and M1 for $\left(\frac{64y^3}{27x^{12}}\right)^{\left[\frac{1}{3}\right]}$ oe If 0 scored, SC1 for $\frac{64y^{[1]}}{27x^4}$ or $\frac{0.333x^{-4}}{0.25y^{-1}}$ seen

106. 0580_s19_ms_43 Q: 5

	Answer	Mark	Partial Marks
(a)(i)	-3 A C C	1	CASIE
(a)(ii)	6.2 to 6.4 oe	2	M1 for 3 seen or used
(b)	y = 5 - 3x ruled Perfection, C	rafte	B1 for $y = 5 - 3x$ soi or ruled line with gradient -3 or with y – intercept at 5 (but not $y = 5$) or B1FT for incorrect line equation/expression shown in working and <i>their</i> line correctly drawn
	- 0.3 to - 0.2 1.65 to 1.8	2	B1 for each, dep on $y = 5 - 3x$ drawn or FT their line provided equation/expression shown in working, dep on B1FT for line

	Answer	Mark	Partial Marks
(c)	Tangent ruled at $x = -2$	1	B1 for correct tangent
	-4.5 to -2.5	2	Dep on B1 for tangent or close attempt at tangent at $x = -2$
			M1 for rise/run also dep on tangent drawn or close attempt at correct tangent Must see correct or implied calculation from a drawn tangent
(d)(i)	8, 4, 0.25 oe	3	B1 for each
(d)(ii)	Correct graph	3	B2FT for 6 or 7 correct plots or B1FT for 4 or 5 correct plots
(d)(iii)	1.8 to 1.9	1	

107. $0580 _s19 _ms_43$ Q: 10

	Answer	Mark	Partial Marks
(a)(i)	3, -1	2	B1 for each
(a)(ii)	23 - 4n oe final answer	2	M1 for $k - 4n$ or $23 - jn$ $(j \neq 0)$
(a)(iii)	22	2	M1 for their (a)(ii) = -65
(b)	23	2	B1 for 37 or 60

108. 0580_w19_ms_41 Q: 7

	Answer	Mark	Partial Marks
(a)	9	3	M2 for $0.42x + 0.42 = 4.2$ oe or better
			or M1 for $0.21x + 0.21(x + 2)$ oe [= 420 or 4.20] or for $21x + 21(x + 2)$ oe [= 420 or 4.20] or for $420 \div 21$ oe [=20]
(b)	5r + p = 245	B1	
	2r + 3p = 215	B1	
	45	3	Finds p M1 for correctly equating coefficients of r M1 for correct method to eliminate r OR M1 for correctly making r the subject of one of <i>their</i> equations M1 for correctly substituting <i>their</i> correct r to form an equation in p OR Finds r first M1 for correctly eliminating p from <i>their</i> equations M1 for correctly substituting <i>their</i> value of r to find p

	Answer	Mark	Partial Marks
(c)(i)	$\frac{12}{x} + \frac{6}{x - 1} [= 5]$	M1	
	12(x-1) + 6x = 5x(x-1)	M1	Dependent on previous M1 earned May be over common denominator
	$5x^2 - 23x + 12 = 0$ reached, with at least one more line of working and with no errors or omissions	A1 Crafte	d With Passion
(c)(ii)	(5x-3)(x-4) final answer	2	B1 for $(5x + a)(x + b)$ with $ab = 12$ or $a + 5b = -23$ or for $5x(x - 4) - 3(x - 4)$ or $x(5x - 3) - 4(5x - 3)$
(c)(iii)	$\frac{3}{5}$ oe and 4	1	FT from their two brackets in (c)(ii)
(c)(iv)	3 cao	1	

	Answer	Mark	Partial Marks
(a)	$x + y \geqslant 6$ oe $y \leqslant x$ oe $x \leqslant 8$	3	B1 for each
(b)	$4x + 6y \leqslant 60$	1	
(c)	Correct region indicated cao	6	B1 for $x + y = 6$ ruled and long enough B1 for $x = y$ ruled and long enough B1 for $x = 8$ ruled and long enough B2 for $2x + 3y = 30$ ruled and long enough or B1 for ruled line through $(0, 10)$ or $(15, 0)$ but not $y = 10$ or $x = 15$
(d)(i)	6, 6	1	
(d)(ii)	34	2	M1 for trying $4x + 6y$ with $(4, 3)$ or $(5, 2)$ or $(6, 1)$ or $(7, 0)$

110. 0580_w19_ms_41 Q: 10

	Answer	Mark	Partial Marks
(a)	$\begin{bmatrix} -7 \\ 13 - 4n \text{ oe} \end{bmatrix}$	11	B1 B2 or B1 for $13 - kn$ ($k \neq 0$) or for $k - 4n$
	$(n+1)^2$ oe		B1 B2 or B1 for any quadratic
	$ \begin{array}{c} 125 \\ n^3 \text{ oe} \end{array} $		B1 B1
	$ \begin{array}{c} 128 \\ 2^{n+2} \end{array} $ oe		$ \begin{array}{c} \mathbf{B1} \\ \mathbf{B2} \\ \text{or } \mathbf{B1} \text{ for } 2^k \text{ oe} \end{array} $
(b)	, 6, 10, 16	3	B1 for each correct row
	, 3, 4, 7, 2,, 1, 0,	1	7
(c)(i)	$\frac{q}{p+q}$	1	
(c)(ii)	$\frac{18}{29}$	1	

AcelGCSE

	Answer	Mark	Partial Marks
(a)	3.5, 15, 3.9	3	B1 for each
(b)	Correct graph	5	B4 for correct curves but branches joined or touching y-axis or B3FT 10 or 11 points or B2FT for 8 or 9 points or B1FT for 6 or 7 points B1indep two separate branches not touching or crossing y-axis
(c)	0.5 to 0.6 and 1.3 to 1.6	2	B1 for each or both correct but in reverse order
(d)	1	1	
(e)(i)	y = 3x + 1 ruled and 0.3 to 0.49	3	B2 for correct ruled line that crosses <i>their</i> curve or B1 for $y = 3x + 1$ soi or freehand line or ruled line with gradient 3 or with y – intercept at 1 (but not $y = 1$)
(e)(ii)	[a =] -6 [b =] -2 [c =] -4	3	M2 for $x^4 + 2 - 4x = 6x^3 + 2x^2$ or better seen or B1 for each correct value to a maximum of 2 marks If 0 scored, SC1 for answer $[a =] 6, [b =] 2$ and $[c =] 4$ or for $x^5 + 2x - 4x^2 = 6x^4 + 2x^3$ or better

AcelGCSE

112. 0580_w19_ms_42 Q: 7

	Answer	Mark	Partial Marks
(a)(i)	13	1	
(a)(ii)	3	2	M1 for $h\left(\frac{10}{30}\right)$ oe soi or $27^{\frac{10}{x}}$
(a)(iii)	$\frac{7-x}{2}$ oe final answer	2	M1 for $x = 7 - 2y$ or $y - 7 = -2x$ or $7 - y = 2x$ or $-\frac{y}{2} = -\frac{7}{2} + x$ oe
(b)	0.75 oe final answer	3	M1 for $\frac{10}{2x+1} = 4$ M1 for $10 = 8x + 4$ or better
(c)	$\frac{70-19x}{x(7-2x)} \text{ or } \frac{70-19x}{7x-2x^2} \text{ final}$ answer	3	M1 for $x + 10(7 - 2x)$ or better isw B1 for common denominator $x(7 - 2x)$ oe isw
(d)	3 final answer	1	7

113. 0580_w19_ms_43 Q: 3

	Answer	Mark	Partial Marks
(a)	5, -3, 21	3	B1 for each
(b)	Fully correct curve	4	B3 FT for 9 or 10 points or B2 FT for 7 or 8 points or B1 FT for 5 or 6 points
(c)	-2.9 to -2.7 0 1.7 to 1.9	2	B1 for 2 correct values

	Answer	Mark	Partial Marks
(d)	Tangent ruled at $x = 2$	B1	
	10 to 14	B2	Dep on correct tangent or close attempt at tangent at $x = 2$ M1 for rise/run also dep on correct tangent drawn or close attempt at tangent Must see correct or implied calculation
			from a drawn tangent
(e)	6	1	

	Answer	Mark	Partial Marks
(a)(i)	5	1	
(a)(ii)	1	2	M1 for $h(0)$ or 3^{9-x^2} or better
(a)(iii)	$9-4x^2$ final answer	1	
(a)(iv)	$15 - 2x^2$ final answer	2	M1 for $2(9-x^2)-3$ or better
(b)	$\frac{x+3}{2}$ final answer	2	M1 for $x = 2y - 3$ or $y + 3 = 2x$ or better or $\frac{y}{2} = x - \frac{3}{2}$
(c)	1.8 or $1\frac{4}{5}$ or $\frac{9}{5}$	2	M1 for $10x - 15 = 3$ or $2x - 3 = \frac{3}{5}$
(d)	-1 and 4 nfww	4	M1 for $9 - (2x - 3)^2 = -16$ A1 for $4x^2 - 12x - 16[= 0]$ oe M1 (dep on first M1) for correct factors or use of formula or completing the square for their 3-term quadratic OR M1 for $9 - y^2 = -16$ A1 for $y^2 = 25$ M1 (dep on first M1) for $2x - 3 = \pm 5$
(e)	1 9	1	

AcelGCSE

115. 0580 _w19 _ms _43 Q: 10

 Answer	Mark	Partial Marks
x + 1 - 2x = 3x(x + 1)	M2	M1 for a common denominator of $x(x+1)$ seen or attempt to multiply through by denominators or for $\frac{x+1-2x}{x(x+1)} = 3$
$3x^2 + 4x - 1 = 0$ oe nfww	A1	
$[x=]\frac{-4 \pm \sqrt{4^2 - 4 \times 3 \times (-1)}}{2 \times 3}$	B2	B1FT for $\sqrt{4^2 - 4 \times 3 \times (-1)}$ or better
2×3		or for $\left(x+\frac{2}{3}\right)^2$
		B1FT for $\frac{-4+\sqrt{q}}{2\times3}$ or $\frac{-4-\sqrt{q}}{2\times3}$
		or for $-\frac{2}{3} \pm \sqrt{\frac{1}{3} + \left(\frac{2}{3}\right)^2}$
-1.55 and 0.22 final answers	B2	B1 for each
		or B1 for -1.548 to -1.549 and 0.215
		or for -1.55 and 0.22 seen in working or for -0.22 and 1.55 as final answer or for -1.5 or -1.54 and 0.2 or 0.21 as final answer
	V	

116. 0580_m18_ms_42 Q: 3

	Answer	Mark	Partial Marks
(a)	0 -0.17 2.4	3	B1 for each
(b)	Fully correct smooth curve	, Cra₄f	B3FT for 9 or 10 correct points or B2FT for 7 or 8 correct points or B1FT for 5 or 6 correct points
(c)	$x \le 0.17 \text{ to } 0.25$ and $x \ge 2.25 \text{ to } 2.3$	3	B2 for strict inequalities or one correct or B1 for 0.17 to 0.25 and 2.25 to 2.3 seen

	Answer	Mark	Partial Marks
(d)(i)	y = 4 - x oe final answer	2	B1 for $4-x$ or $y = k-x$ or $y = 4+kx$ oe
(d)(ii)	correct ruled line	1	FT if in form $y = mx + c$ oe $(m, c \neq 0)$
	0.125 to 0.2 and 2.15 to 2.2	2	B1 for each

117. 0580_m18_ms_42 Q: 4

	Answer	Mark	Partial Marks
(a)	$[\pm]\sqrt{k-s}$ final answer	2	M1 for $t^2 = k - s$
(b)(i)	(x-5)(x+5) final answer	1	
(b)(ii)	$\frac{x-5}{x-7}$ nfww final answer	3	M2 for $(x-7)(x+5)$ or M1 for $x(x+5)-7(x+5)$ or $x(x-7)+5(x-7)$ or $(x+a)(x+b)$ where $a+b=-2$ or $ab=-35$
(c)	$\frac{4x^2 - 7x - 8}{x(x+1)} \text{ or}$ $\frac{4x^2 - 7x - 8}{x^2 + x} \text{ final answer}$	3	M1 for $(x-8)(x+1)+3x\times x$ oe isw B1 for common denominator $x(x+1)$ oe isw
(d)	3, 4, 5, 6 nfww	3	B2 for 3 correct or 4 correct and 1 extra or M2 for $n > \frac{18}{8}$ oe and $n \le 6$ or M1 for $18 < 8n [\le 30 + 3n]$ or $[18 - 3n <] 5n \le 30$ seen

118. 0580_m18_ms_42 Q: 6

	Answer	Mark	Partial Marks
(a)	<i>y</i> > <i>x</i>	1	CCE
	<i>x</i> ≥ 15	1	
	y < 50 Paper Perfectio	n,Crta	fted With Passion
	$x + y \leqslant 70$	1	
(b)	Four correct ruled lines and correct region indicated	5	all lines ruled B1 for $y = x$ broken B1 for $x = 15$
			B1 for $y = 50$ broken
			B1 for $x + y = 70$
(c)	189	2	M1 for (21, 49) seen or for $2x + 3y$ written for a point (x, y) in <i>their</i> region where x and y are integers

119. 0580 m18 ms 42 Q: 11

	Answer	Mark	Partial Marks
(a)	25 9 16	3	B1 for each
(b)(i)	$(n-1)^2$ oe	2	B1 for any quadratic of form $[1]n^2[+bn+c]$
(b)(ii)	n+3 oe	1	
(c)	25	2	M1 for their $(n-1)^2 = 576$
(d)(i)	$n^2 - 3n - 2$ final answer	3	M1 for their $(n-1)^2$ – their $(n+3)$ oe or 2nd diff = 2 soi B1 for $n^2 - n - n + 1$ or better or $-n - 3$ or for expression of form $n^2 - 2n - n + k$ or correct expression not in simplest form
(d)(ii)	808 cao	2	M1 for substituting 30 in their (d)(i)

120. 0580_s18_ms_41 Q: 5

	Answer	Mark	Partial Marks
(a)(i)	(2n+m)(m-3) final answer	2	M1 for $m(2n+m)-3(2n+m)$ or $2n(m-3)+m(m-3)$
(a)(ii)	(2y-9)(2y+9) final answer	1	
(a)(iii)	(t-4)(t-2) final answer		B1 for $(t-4)(t-2)$ seen and spoiled or M1 for $t(t-2) - 4(t-2)$ or $t(t-4) - 2(t-4)$ or $(t+a)(t+b)$ where $a+b=-6$ or $ab=+8$
(b)	[x =] er Perfection, Cra	fted ⁴ \	M1 for $xk = 2m - x$ or $k = \frac{2m}{x} - 1$ M1 for $xk + x = 2m$ or $k + 1 = \frac{2m}{x}$ M1 for $x(k+1) = 2m$

	Answer	Mark	Partial Marks
(c)	correctly eliminating one variable	M1	
	[x =] 6	A1	
	[y =] -2	A1	If 0 scored SC1 for 2 values satisfying one of the original equations or SC1 if no working shown, but 2 correct answers given
(d)(i)	3m-4(m+4)=6m(m+4)	M1	or $\frac{3m-4(m+4)}{m(m+4)}$ [= 6] oe
	$3m - 4m - 16 = 6m^2 + 24m$	M1	removes brackets correctly
	$6m^2 + 25m + 16 = 0$	A1	with no errors or omissions
(d)(ii)	$\frac{-25\pm\sqrt{(25)^2-4(6)(16)}}{}$	2	B1 for $\sqrt{(25)^2 - 4(6)(16)}$ or better
	$ \begin{array}{c c} 2 \times 6 \\ \text{or} \\ 25 & (25)^2 & 16 \end{array} $		or B1 for $\left(m + \frac{25}{12}\right)^2$
	$\frac{-25}{12} \pm \sqrt{\left(\frac{25}{12}\right)^2 - \frac{16}{6}}$		and if in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$
		7/	B1 for $p = -25$ and $r = 2(6)$
	-0.79 and -3.38	2	B1 for each
	final ans cao		SC1 for -0.8 and -3.4
			or for -0.78 and -3.37 or -0.789 and -3.377 or 0.79 and 3.38 or -0.79 and -3.38 seen in working
			or one and one of the morning

AcelGCSE

121. 0580_s18_ms_41 Q: 7

Answer	Mark	Partial Marks
x = 0	1	
Tangent ruled at $x = 0.5$	B1	No daylight between tangent and curve at point of contact
−9 to −6.5	2	dep on ruled tangent or close attempt at tangent at $x = 0.5$
		M1 for rise/run also dep on tangent or close attempt at tangent at $x = 0.5$
0 2.4 or better 4	3	B1 for each
Correct smooth curve	4	B3FT for 6 or 7 correct plots or B2 FT for 4 or 5 correct plots or B1 FT for 2 or 3 correct plots
		FT their table
$x^3 + 3x + 4 = 10 - 8x^2$ and correctly completed	97	
line $y = -2x + 2$ drawn and -0.45 to -0.35 nfww	3	B2 for ruled $y = -2x + 2$ or B1 for $-2x + 2$ seen or for line $y = -2x + c$ drawn or for $y = cx + 2$ $(c \ne 0)$ drawn and B1 for -0.45 to -0.35 nfww
	Tangent ruled at $x = 0.5$ $-9 \text{ to } -6.5$ $0 2.4 \text{ or better} 4$ Correct smooth curve $x^3 + 3x + 4 = 10 - 8x^2 \text{ and correctly completed}$ line $y = -2x + 2$ drawn and	$x = 0$ 1Tangent ruled at $x = 0.5$ B1 -9 to -6.5 20 2.4 or better 43Correct smooth curve4 $x^3 + 3x + 4 = 10 - 8x^2$ and correctly completed1line $y = -2x + 2$ drawn and3

	Answer	Mark	Partial Marks
(a)	18 28	2	B1 for each
(b)	3n+3 oe	2	B1 for $3n + k$ oe or $cn + 3$ oe $c \neq 0$
(c)	45	2	M1 for identifying 7th pattern or M1 for their $(3n+3)=24$
(d)	$[a=]\frac{3}{2}$ oe $[b=]\frac{13}{3}$ oe	6	M1 for any correct substitution e.g. $\frac{1}{6}(2)^3 + 2^2a + 2b$ A1 for one of e.g. $\frac{1}{6} + a + b = 6$ oe $\frac{8}{6} + 4a + 2b = 16$ oe $\frac{27}{6} + 9a + 3b = 31$ oe $\frac{64}{6} + 16a + 4b = 52$ oe A1 for another of the above M1 for correctly eliminating one variable from their equations
			A1 for $a = \frac{3}{2}$ A1 for $b = \frac{13}{3}$ oe

Paper Perfection, Crafted With Passion

123. 0580_s18_ms_42 Q: 4

	Answer	Mark	Partial Marks
(a)(i)	$243p^{10}$ final answer	2	B1 for answer $243p^k$ or kp^{10} $(k \neq 0)$
(a)(ii)	9xy ⁴ final answer	2	B1 for answer with two correct elements in correct form of expression
(a)(iii)	$\frac{m^2}{25}$ final answer	1	
(b)	10	97	B2 for $x = 8$ or for [length of rectangle =] 31 or M1 for $5x - 9 = 3x + 7$ oe or better M1 for $\frac{310}{(3 \times theirx + 7)}$ or $\frac{310}{(5 \times theirx - 9)}$ Alt method using simultaneous eqns M1 for $5xw - 9w = 310$ and $3xw + 7w = 310$ M1 for equating coefficients of xw
			M1 for subtraction to eliminate term in xw

AcelGCSE

	Answer	Mark	Partial Marks
(a)	-2[.0], -0.2, 2.5	3	B1 for each
(b)	Fully correct curve	5	B4 for correct curve, but branches joined or B3FT for 9 or 10 correct plots or B2FT for 7 or 8 correct plots or B1FT for 5 or 6 correct plots and B1 indep two separate branches not touching or cutting <i>y</i> -axis
(c)(i)	Correct tangent and $3 \le \text{grad} \le 5$	3	B2 for close attempt at tangent to curve at $x = -2$ and answer in range OR B1 for ruled tangent at $x = -2$, no daylight at $x = -2$ and M1dep (dep on B1 or close attempt at tangent) [at $x = -2$] for $\frac{rise}{run}$
(c)(ii)	$[y =] their(\mathbf{c})(\mathbf{i}) x + their y$ -intercept final answer	2	Strict FT their y-intercept for their line M1 for $y = their(\mathbf{c})(\mathbf{i}) x + any value$ or 'c' oe seen or for $y = any value$ (non-zero) x or 'mx' + their y-intercept seen oe
(d)(i)	1.05 to 1.25	1	
(d)(ii)	-2.3 to -2.2 -0.4 to -0.3 0.3 to 0.4	3	B1 for each After 0 scored B1 for $y = -4$ ruled

	Answer	Mark	Partial Marks
(e)	[a =] 2 [b =] 24 per Perfection, (n =] 5	3 Crafted	B2 for 2 correct or for $2x^5 + 24x^2$ [-3 = 0] on or B1 for 1 correct or for $\frac{2x^5 - 3 + 4(6x^2)}{6x^2}$ [= 0] oe If 0 scored SC1 for $2x^5$ seen in final line of algebra

125. 0580_s18_ms_42 Q: 8

	Answer	Mark	Partial Marks
(a)(i)	1	2	M1 for $h(0)$ or for 2^{8-3x}
(a)(ii)	8	2	M1 for g(½) or for $\frac{10}{2^x + 1}$

$\frac{10-x}{x}$ or $\frac{10}{x}-1$ final answer	3	M2 for $x = \frac{10 - y}{y}$ or better or xy = 10 - x or better or $y + 1 = \frac{10}{x}$ or M1 for $x(y + 1) = 10$ or $y(x + 1) = 10$ or $x = \frac{10}{y+1}$ or $x + 1 = \frac{10}{y}$
5	1	
$\frac{-3x^2 + 5x + 18}{x + 1}$ final answer	3	M1 for $\frac{(8-3x)(x+1)+10}{x+1}$ B1 for $-3x^2 - 3x + 8x + 8$ [+10]
	5	$\frac{1}{x}$ or $\frac{1}{x}$ I final answer

AcelGCSE

	Answer	Mark	Partial Marks
(a)	15.6[0]	4	B3 for $20900x = 326040$ or better
			or M2 for $18500x + 2400(x - 2.5[0]) = 320040$
			or M1 for $18500x$ or $2400(x-2.5[0])$
(b)(i)	(y+12)(y-7) final answer	2	B1 for $(y+a)(y+b)$ where $ab = -84$
			or $a+b=5$ or $y(y+12)-7(y+12)$
			or $y(y-7) + 12(y-7)$
(b)(ii)	38 cao	3	B2 for $y = 7$
			or M1 for $y(y + 5) = 84$ oe
(c)(i)	$168(m - 0.75) + 207m = 100m(m - 0.75)$ oe OR $207 = 100m - 168 - 75 + \frac{126}{m}$	M2	May be all over common denominator M1 for $\frac{168}{m}$ or $\frac{207}{m-0.75}$ used
	at least one interim line leading to $50m^2 - 225m + 63 = 0$	A1	No errors or omissions

	Answer	Mark	Partial Marks
(c)(ii)	(10m-3)(5m-21)	B2	M1 for $(10m + a)(5m + b)$ where $ab = 63$ or $5a + 10b = -225$ or $10m(5m - 21) - 3(5m - 21)$ or $5m(10m - 3) - 21(10m - 3)$
	OR		OR
	$m = \frac{-(-225) \pm \sqrt{(-225)^2 - 4(50)(63)}}{2(50)}$ oe		M1 for $\sqrt{(-225)^2 - 4(50)(63)}$ or for $p = -(-225)$,
	$m = \frac{-(-225) \pm \sqrt{(-225)^2 - 4(50)(63)}}{2(50)} \text{ oe}$ Paper Perfection,	Craf	
	OR		OR
	$m = \frac{225}{100} \pm \sqrt{\left(\frac{225}{100}\right)^2 - \frac{63}{50}}$ oe		M1 for $\left(m - \frac{225}{100}\right)^2$ oe
	4.2[0] cao	B1	

127. 0580_s18_ms_43 Q: 10

	Answer	Mark	Partial Marks
(a)(i)	26	2	M1 for g(5) or for $(x^2 + 1)^2 + 1$
(a)(ii)	$x^2 + 4x + 5$	2	M1 for $(x+2)^2+1$
(a)(iii)	5	2	M1 for $2x-3=7$
(a)(iv)	$\frac{x+3}{2}$ oe	2	M1 for $x = 2y - 3$ or $y + 3 = 2x$ or $\frac{y}{2} = x - \frac{3}{2}$ oe
(b)(i)	[0].70 cao	2	B1 for [0].696 to [0].697
(b)(ii)	4 cao	1	

128. 0580_w18_ms_41 Q: 9

	Answer	Mark	Partial Marks
(a)(i)	$\frac{72}{m}$	1	7
(a)(ii)	$\frac{72}{m+0.9}$	1	
(b)	$\frac{72}{m} - \frac{72}{m + 0.9} = 4 \text{ oe}$	M1	FT their (a)(i) and (a)(ii) if expressions in m
	72(m+0.9)-72m=4m(m+0.9) oe	M1	Dependent on M1 and correct fractions
	$[72m-72m]+64.8=4m^2+3.6m$ oe nfww	A1	CSE
	Correct completion to $10m^2 + 9m - 162 = 0$	rafted	With Passion
(c)(i)	3.6 and -4.5 final answer	3	B2 for $(2m+9)(5m-18)$ or $\frac{-9 \pm \sqrt{(9)^2 - 4(10)(-162)}}{2 \times 10}$ or better or B1 for $(am+b)(cm+d)$ where ac = 10 and either $bd = -162$ or $ad+bc = 9$ or for $\sqrt{(9)^2 - 4(10)(-162)}$ or better or $\frac{-9 \pm \sqrt{q}}{2(10)}$ or better
(c)(ii)	20	1	

129. 0580_w18_ms_41 Q: 11

	Answer	Mark	Partial Marks
(a)	$5(m-2p^2)(m+2p^2)$ final answer	3	M2 for $(5m+k)(m+j)$ where $kj = -20p^4$ or $5j+k=0$ or M1 for $5(m^2-4p^4)$ seen
(b)	$[P =] \frac{100A}{100 + TR} $ final answer	3	M1 for $100A = 100P + PRT$ or for $A = P(1 + \frac{RT}{100})$ M1 for $100A = P(100 + RT)$ or for $\frac{A}{1 + \frac{RT}{100}} = P$ or for $100A = P(1 + RT)$ after $100A = P + PRT$ as first step

130. 0580 w 18 ms 42 Q: 2

	Answer	Mark	Partial Marks
(a)	-1.5	3	M1 for $30 + 2x = 9 - 12x$ or
			$10 + \frac{2}{3}x = 3 - 4x$
			M1 for collecting <i>their</i> terms correctly to reach $ax = b$
(b)	$6ab^2(2b+3a^2)$ final answer	2	M1 for any correct partial factorisation seen or for correct answer seen
(c)(i)	$10a^5c^9$ final answer	2	B1 for final answer with $10a^kc^9$ or $10a^5c^k$ or ka^5c^9
(c)(ii)	$\frac{8a^6}{c^9}$ or $8a^6c^{-9}$ final answer	2 Crafte	B1 for final answer with $\frac{8a^6}{c^k}$ or $\frac{8a^k}{c^9}$ or
			$\frac{ka^6}{c^9} \ [k \neq 0]$
			or for correct answer seen

	Answer	Mark	Partial Marks
(d)	0.5 or $\frac{1}{2}$	3	M1 for $y = \frac{k}{(x+2)^2}$ oe B1 for $k = 50$ or M2 for $2(3+2)^2 = y(8+2)^2$ oe
(e)	$\frac{7x-x^2}{2(x-2)}$ or $\frac{7x-x^2}{2x-4}$ oe final answer	3	M1 for $5 \times 2 - (x - 5)(x - 2)$ oe seen M1 for common denominator $2(x - 2)$ oe isw

131. 0580_w18_ms_42 Q: 4

	Answer	Mark	Partial Marks
(a)	$\frac{1}{2} \times 4(x-1) \times (2x+5)[\sin 90] = 30$ oe	M1	
	$8x^2 - 8x + 20x - 20$ or better	B1	correct expansion of brackets
	Completion to $2x^2 + 3x - 20 = 0$	A1	with no errors or omissions seen
(b)	(2x-5)(x+4)	M2	Allow M2 for e.g. $2x(x + 4) - 5(x + 4)$ then $2x - 5[=0]$ and $x + 4[=0]$ M1 for $2x(x + 4) - 5(x + 4)$ or $x(2x - 5) + 4(2x - 5)$ or $(2x + a)(x + b) [= 0]$ where $ab = -20$ or $a + 2b = 3$ [a, b integers]
	2.5 and -4 cao	B1	CCE
	ACEL		

	Answer	Mark	Partial Marks
(c)	11.7 or 11.66 or 11.67 ction, C		1 222 2222 2222
			$\sqrt{20x^2 - 12x + 41}$ at any stage

132. 0580_w18_ms_42 Q: 6

	Answer	Mark	Partial Marks
(a)	0.6	1	
(b)	50.7	3	M2 for $1.2 \times 19 + \frac{1}{2}(19 + 12) \times 1.8$ oe or M1 for method for finding any relevant area
(c)	17.9	3	M2 for <i>their</i> 50.7 – 1.2 × 19 [– 10] oe or M1 for 1.2 × 19 oe seen isw

133. 0580 w 18 ms 43 Q: 4

	Answer	Mark Mark	Partial Marks
(a)	-1, 3	2	B1 for each

	Answer	Mark	Partial Marks
(b)	Correct graph	3	B2FT for 6 or 7 correct points or B1FT for 4 or 5 correct points
(c)	Correct ruled tangent and $-2 \le \text{gradient} \le -1.5$	3	B2 for close attempt at tangent at $x = -4$ and answer in range OR B1 for ruled tangent at $x = -4$ with no daylight
	Ace	G	and M1 for rise/run also dep on close attempt at tangent. Must see correct or implied calculation from a drawn tangent.
(d)	_{-3,3} Paper Perfectio	n,Cra	fted With Passion
(e)	Correct graph	4	B3FT for 7 or 8 correct points or B2FT for 5 or 6 correct points or B1FT for 3 or 4 correct points
(f)(i)	3.6 to 3.85	1	
(f)(ii)	x > their (f)(i)	1	FT
(g)	$\frac{x^2}{4} = \frac{9}{x} + \frac{4}{x} \text{ or } \frac{x^3}{4} - 4 = 9$	M1	Allow $\frac{13}{x}$ for $\frac{9}{x} + \frac{4}{x}$
	52	A1	

134. 0580_w18_ms_43 Q: 9

	Answer	Mark	Partial Marks
(a)	0	1	
(b)	5	2	M1 for $3(3^x) + 4$ or better or $f(\frac{1}{3})$ or $f(3^{-1})$
(c)	$\frac{x+1}{2}$ oe final answer	2	M1 for $x = 2y - 1$ or $y + 1 = 2x$ or $\frac{y}{2} = x - \frac{1}{2}$ or better
(d)	9x + 16	2	M1 for $3(3x + 4) + 4$ oe
(e)	$9x^2 + 24x + 16$	2	B1 for three terms from $9x^2 + 12x + 12x + 16$ correct
(f)	27	2	M1 for $x = h(their g(2))$

135. 0580_w18_ms_43 Q: 10

	Answer	Mark	Partial Marks
(a)	8	B1	
	<u>15</u>		
	$\frac{n+2}{2n+3}$ oe	B2	B1 for $n + 2$ as numerator or $2n + 3$ as denominator
(b)(i)	1-2n oe	2	B1 for $-2n + k$ oe or $pn + 1$ $(p \neq 0)$ oe
(b)(ii)	$n^3 + 1$ oe	2	M1 for cubic expression

Paper Perfection. Crafted With Passion

	ANSWER	MARK	PARTIAL MARKS
(a) (i)	(3x-1)(x+4)	2	M1 for $(3x+b)(x+c)$ with $bc = -4$ or $3c+b=11$ or for $3x(x+4)-1(x+4)$ or for $x(3x-1)+4(3x-1)$
(ii)	$\frac{1}{3}$ oe and -4	1	
(b) (i)	$2 \times 2(x-4) - 2(2x+11) = (2x+11)(x-4)$ or better	M2	M1 for common denom $2(2x+11)(x-4)$ seen or attempt to multiply through by denoms or for $\frac{2(x-4)-(2x+11)}{(2x+11)(x-4)} \left[= \frac{1}{2} \right]$
	$2x^2 + 11x - 8x - 44$ or better	B1	or for other correct relevant 2 bracket expansion if alt method used
	$4x-16-4x-22=2x^2-8x+11x-44$ $2x^2+3x-6=0$	A1	correct solution reached with all brackets expanded and no errors or omissions seen
(ii)	$\frac{-3 \pm \sqrt{(3)^2 - 4(2)(-6)}}{2 \times 2}$	2	B1 for $\sqrt{(3)^2 - 4(2)(-6)}$ or better or $\left(x + \frac{3}{4}\right)^2$ oe
			and B1 for $\frac{-3 + \sqrt{q}}{2(2)}$ or $\frac{-3 - \sqrt{q}}{2(2)}$ or better or $-\frac{3}{4} + \sqrt{\frac{57}{16}}$ oe or $-\frac{3}{4} - \sqrt{\frac{57}{16}}$ oe
	-2.64 and 1.14 final ans cao	B1B1	SC1 for -2.6 or -2.637 and 1.1 or 1.137 or -2.64 and 1.14 seen in working or 2.64 and -1.14 as final answers

Paper Perfection, Crafted With Passion

137. 0580_m17_ms_42 Q: 9

	ANSWER	MARK	PARTIAL MARKS
(a)	x < 10 oe	1	Accept $x \leq 9$
	$y \geqslant 2$ oe	1	Accept $y \ge 1$
(b)	$x + 3y \leqslant 21$ oe	1	Mark answer line isw
(c)	ruled broken line $x = 10$	B1	or ruled line $x = 9$
	ruled line $y = 2$	B1	or ruled broken line $y = 1$
	ruled line from (0, 7) to (21, 0)	B2	SC1 for line with negative gradient correct only at (0, 7) or (21, 0)
	correct region indicated cao	1	
(d) (i)	4	1	
(ii)	20	1	

138. 0580_m17_ms_42 Q: 11

	ANSWER	MARK	PARTIAL MARKS
(a)	4 5 6 7	1	
	8 16 32 64 128	3	B2 for 3 or 4 correct or B1 for first 2 correct If 0 scored, SC1 for 4 values correctly doubled FT one error
(b)	2 ⁿ oe	1	
(c) (i)	2+4+8=14	1	
(ii)	16-2=14 62 and 6a per Perfection, Craft	ed Wi	or for $14 + 2 = 16 = 2^4$ B1 for each th Passion
(iii)	$2^{n+1} - 2$ oe	1	
(iv)	9	1	

139. $0580_s17_ms_41$ Q: 4

	ANSWER	MARK	PARTIAL MARKS
(a)	-1.6 to -1.4	1	
(b)	-0.5	1	
(c)	k > -4	2	B1 for identifying the -4 or for horizontal line drawn $y = -4$
(d)	y = x - 5 ruled and -2.3 to -2.1 -1.2 to -1.1 1.3 to 1.4	3	B2 for correct line and 2 correct values or no line and 3 correct values or B1 for no line and 2 correct values or B1 for correct line
(e)	Tangent ruled at $x = 1$	B1	No daylight at point of contact. Consider point of contact as midpoint between two vertices of daylight, the midpoint must be between $x = 0.8$ and 1.2
	-6 to -4	2	Dep on B1 or close attempt at tangent at $x = 1$ M1 for rise/run for <i>their</i> tangent at $x = 1$

140. 0580_s17_ms_41 Q: 6

	ANSWER	MARK	PARTIAL MARKS
(a)(i)	-7x + 55 final answer	2	M1 for $8x + 20$ or $-15x + 35$ or answer $-7x + k$ or $kx + 55$
(a)(ii)	$x^2 - 14x + 49$ final answer	2	M1 for 3 of $x^2 - 7x - 7x + 49$

	ANSWER	MARK	PARTIAL MARKS
(b)(i)	₋₁₈ Paper Perfection, C	rafte ₃ c	 M1 for a correct first step ie correctly multiplying by 3 or correctly dividing by 2 or for correctly subtracting 5 M1 for correctly reaching ax = b from their first step
(b)(ii)	15	3	M2 for $6x - 4x = 21 + 9$ oe or M1 for $6x - 21$ or correct division by 3 or for correctly reaching $ax = b$ from their first step
(b)(iii)	5 and -5	3	B2 for 5 or -5 or M1 for $[x^2 =] (74 + 1) \div 3$ or better

141. 0580_s17_ms_41 Q: 9

	ANSWER	MARK	PARTIAL MARKS
(a)(i)	5 and 13	1	
(a)(ii)	8n - 3 = 203	M1	Evaluation of 25th or 26th term with supporting evidence or explanation
	$25.75 \text{ or } 25\frac{3}{4}$	A1	Second evaluation of 25th or 26th terms with supporting evidence or explanation
			If zero scored, SC1 for 25.75 or 197 and 205 with partial evidence or explanation
(b)(i)	6n + 7 oe final answer	2	B1 for $6n + c$ or $kn + 7$ $k \neq 0$
(b)(ii)	$n^2 + n + 2$ oe final answer	2	B1 for a quadratic expression or second difference = 2
(c)	[y =] 10	2	M1 for $5(20 - y) = 50$
	[First term =] 14	2	M1 for $5(x - their y) = 20$ or for $20 \div 5 + their y$

142. 0580_s17_ms_42 Q: 4

	ANSWER	MARK	PARTIAL MARKS
(a)	−1.75 to −1.7	1	/
	1.7 to 1.75	1	
(b)(i)	Correct ruled solid tangent at (-1.5, 3.5)	1	CCCE
(b)(ii)	-7 to -5	2 dep	dep on close attempt at ruled solid tangent at $x = -1.5$ in
	Paper Perfect	tion,(part (b)(i) M1 for rise/run dep on close attempt at ruled solid tangent at $x = -1.5$
(c)(i)	1	1	
(c)(ii)	Correct curve	3	B2 for 4 or 5 correct points or B1 for 2 or 3 correct points

	ANSWER	MARK	PARTIAL MARKS
(d)(i)	-0.95 to -0.8	1	
	1.1 to 1.45	1	
(d)(ii)	their (-0.95 to -0.8)< x < their (1.1 to 1.45) oe	1FT	correct or FT their (d)(i)
(e)(i)	0.125 oe and 0.03125 oe and 0.000976 to 0.000977 oe	1	
(e)(ii)	0	1	accept zero, nought, etc

143. 0580_s17_ms_42 Q: 7

	ANSWER	MARK	PARTIAL MARKS
(a)(i)	4.5 or $4\frac{1}{2}$ or $\frac{9}{2}$ final answer	3	M2 for $[2](4x + 7) = [2](6x - 2)$ oe or M1 for $2(2x + 6) + 2(2x + 1)$ oe or $4(3x - 1)$ oe or M1 for correctly reaching $ax = b$ from their linear equation
(a)(ii)	$(2x+6)(2x+1) = (3x-1)^2$	M1	May be seen in different stages
	$5x^2 - 20x - 5 = 0$ oe	В3	B1 for $4x^2 + 2x + 12x + 6$ or better B1 for $9x^2 - 3x - 3x + 1$ or better
	$\frac{-(-20) \pm \sqrt{(-20)^2 - 4(5)(-5)}}{2(5)}$ oe Paper Perfect	M2	FT their 3 term quadratic provided formula used or complete the square M1 for $\sqrt{(-20)^2 - 4(5)(-5)}$ oe or if in form $\frac{-(-20) + \sqrt{q}}{2(5)}$ or $\frac{-(-20) - \sqrt{q}}{2(5)}$ FT± their quadratic or for completing the square M2 for $2 \pm \sqrt{1 + 2^2}$ or M1 for $(x - 2)^2$
	4.24 or 4.236 cao	B1	
(b)(i)	(x+5)(x-1) final answer	2	B1 for $x(x-1) + 5(x-1)$ or $x(x+5) - [1](x+5)$ or for $(x+a)(x+b)$ where $ab = -5$ or $a+b=4$

	ANSWER	MARK	PARTIAL MARKS
(b)(ii)	$5(x+1) - 8x = x(x+1)$ or $5x + 5 - 8x = x^2 + x$	M2	Could be seen in different stages M1 for $5(x+1) - 8x$ seen or for common denominator of $x(x+1)$ for LHS or both sides soi
	-5 and 1 cao	A2	A1 for $x^2 + 4x - 5 = 0$ oe

144. 0580_s17_ms_42 Q: 9

	ANSWER	MARK	PARTIAL MARKS
(a)(i)	100	1	
(a)(ii)	92.3 or 92.29 to 92.31	3	M2 for $200 \div (2 + \frac{10}{60})$ oe
			or M1 for 200 ÷ <i>their</i> time interval
			or M1 for $\frac{10}{60}$ soi oe
(b)(i)	240 nfww	3	M2 for $\frac{V}{2} \left(\frac{30}{60} + \frac{20}{60} \right) = 100$ oe
			or $M1$ for any correct relevant area seen in terms of V
(b)(ii)	$\frac{2}{9}$ oe	2FT	FT for their (b)(i) ÷ 1080 to 3 sf or better M1 for their (b)(i) × $\frac{1000}{3600}$ soi
(b)(ii)	$\frac{2}{9}$ oe	2FT	

145. 0580_s17_ms_42_Q: 10

	ANSWER	MARK	PARTIAL MARKS
(a)	-11 Paper Perfect	ion ₁	Crafted With Passion
(b)	7	2	M1 for $3x - 2 = 19$ or better
(c)	25	2	M1 for $3 \times 3^x - 2$ oe
(d)	$9x^2 - 8x + 2$ final answer	3	M1 for $(3x-2)^2 + 3x - 2 + x$ oe
			B1 for $\left[(3x-2)^2 = \right] 9x^2 - 6x - 6x + 4$ oe
(e)	$\frac{x+2}{3}$ oe final answer	2	M1 for $x = 3y - 2$ or $y + 2 = 3x$ or $\frac{y}{3} = x - \frac{2}{3}$ or better

146. 0580_s17_ms_43 Q: 3

	ANSWER	MARK	PARTIAL MARKS
(a)	0 2.25 2 1.25	4	B1 for each
(b)	Fully correct smooth curve	4	B3 FT for 7 or 8 points
			or B2 FT for 5 or 6 points
			or B1 FT for 3 or 4 points

	ANSWER	MARK	PARTIAL MARKS
(c)	1	1	
(d)(i)	[y=]x+1	1	
(d)(ii)	-2.2 to -2.1	1	
	-0.45 to -0.4	1	
	0.51 to 0.6		If zero scored, SC1 for their line in (d)(i) drawn. It must be of the form $y = mx + c$ ($m \ne 0$) and drawn 'fit for purpose'
(e)	-1.33 < k < 0 to 0.1	2FT	FT Strict ft of <i>their</i> max point and min point dep on cubic graph or accept correct answer from calculus B1 for each If zero scored, SC1 for two correct values reversed

147. 0580_s17_ms_43 Q: 7

	ANSWER	MARK	PARTIAL MARKS
(a)	[x=]-5	4	M1 for correctly equating one set of coefficients
	[y=] 7 with correct working		M1 for correct method to eliminate one variable
			OR
			M1 for correctly rearranging one equation
			M1 for correct method to eliminate one variable
			A1 $x = -5$ A1 $y = 7$ both dep on M2
			If zero scored, SC1 for 2 values satisfying one of the original equations
			SC1 if no correct working shown, but 2 correct answers given
(b)	[a =] 36 [b =] -6	3	B2 for either correct
			M1 for $a = b^2$ or for $x^2 + bx + bx + b^2$ or
			better or for $(x-6)^2$ seen and M1 for $2b = -12$ soi
(c)	$\frac{7x^2 - 12x - 10}{(2x - 5)(x - 1)}$ oe final answer nfww	4	B1 for common denom $(2x-5)(x-1)$ seen oe isw
			M1 for $x(x-1)+(3x+2)(2x-5)$ soi isw
			B1 for $6x^2 - 15x + 4x - 10$ soi

 $_{148.\;0580_s17_ms}_{43}^{Pa}$ per Perfection, Crafted With Passion

ANSWER	MARK	PARTIAL MARKS
$(n+3)^2$ oe final answer	1, 2	M1 for a quadratic expression seen or second differences 2
3n+2 oe final answer	1, 2	B1 for $3n + k$ (any k) or $kn + 2$ ($k \ne 0$)
47 $(n+3)^2 - (3n+2)$ oe isw	1, 2FT	FT their difference expressions $A - B$ M1 for expression $an^2 + bn + c$ seen or second differences 2
$\frac{7}{6}$ $\frac{n+2}{n+1}$ oe final answer	1, 2	B1 for $\frac{n+k+1}{n+k}$ seen

149. 0580_w17_ms_41 Q: 3

	ANSWER	MARK	PARTIAL MARKS
(a)	$-2.75 \text{ or } -2\frac{3}{4}$	2	M1 for $11x - 3x = -7 - 15$ or better
(b)(i)	(x+11)(x-2) final answer	2	M1 for $(x + a)(x + b)$ where $ab = -22$ or $a + b = 9$
(b)(ii)	-11 and 2 final answer	1	
(c)	$[x] = \frac{2a}{2 - y} \text{ or } \frac{-2a}{y - 2} \text{ nfww}$ final answer	4	M1 for clearing the x term in the denominator M1 for correctly removing the bracket (expand or divide by 2) M1 for factorising to obtain single x term M1 for their factor and division Incorrect answer scores 3 out of 4 maximum
(d)	$\frac{x}{x+6}$ nfww final answer	3	M1 for $x(x-6)$ M1 for $(x+6)(x-6)$

150. 0580_w17_ms_41 Q: 4

	ANSWER	MARK	PARTIAL MARKS
(a)	10, 7	2	B1 for each value
(b)	Correct curve	4	B3 FT for 10 or 11 correct points B2 FT for 8 or 9 correct points B1 FT for 6 or 7 correct points FT their table
(c)	-1.7 to -1.55	1	FT their graph if one answer
(d)	Tangent ruled at $x = 3.5$	B1	No daylight between tangent and curve at point of contact
	6.5 to 11 Paper Perfection,	Crafte	dep on tangent drawn or close attempt at tangent at $x = 3.5$ M1 for rise/run also dep on tangent or close attempt at $x = 3.5$
(e)	line $y = 2x + 10$ ruled AND -1.3 to -1.1 1 4.1 to 4.25	4	B3 for correct line (could be short) and 1 correct value or B2 for correct line (could be short) or B1 for $[y =]2x + 10$ seen If zero scored, SC1 for no/wrong line and 3 correct values

151. 0580_w17_ms_41 Q: 6

	ANSWER	MARK	PARTIAL MARKS
(a)	18 22 $4n + 2$ oe 17 26 $n^2 + 1$ oe	6	B2 for 18, 22, 17, 26 or B1 for two or three correct values AND B2 for $4n + 2$ oe or B1 for $4n + k$ oe or $pn + 2$ ($p \ne 0$) AND B2 for $n^2 + 1$ oe or B1 for $n^2 + k$ oe
(b)	242	1	FT their $4n + 2$ provided a linear expression
(c)	15	1	
(d)	3	2	M1 for $2 \times 1^2 + 2 \times 1 + q = 7$ oe

152. 0580_w17_ms_41 Q: 7

	ANSWER	MARK	PARTIAL MARKS
(a)	-7	1	7
(b)	$\frac{4}{64}$ or better	2	M1 for $g(4^3)$ soi or $\frac{4}{4^x}$ or better
(c)	$\frac{3-x}{2}$ oe final answer	2	M1 for $x = 3 - 2y$ or $2x = 3 - y$ or $\frac{y}{2} = \frac{3}{2} - x$ or $\frac{y-3}{-2}$ oe as final answer
(d)	4^{3-2x}	M1	
	Correctly interprets the indices		Dep on previous M1 e.g. $4^3 \times 4^{-2x}$ or $4^3 \times \frac{1}{4^{2x}}$ or $\frac{4^3}{4^{2x}}$
	$\frac{64}{16^x}$ Reper Perfection, C	rafAt	Correct completion with no errors
(e)	1.5	2	B1 for $4^x = 8$ or better

	ANSWER	MARK	PARTIAL MARKS
(a)	3.2 or 3.15 or 3.152 to 3.153 5.2 or 5.19 or 5.20 or 5.196	2	B1 for each
(b)	Correct graph for $0.5 \le x \le 3.5$	4	B3FT for 6 or 7 correct points or B2FT for 4 or 5 correct points or B1FT for 2 or 3 correct points
(c)	1.7 to 1.8	1FT	FT their graph if one answer
(d)(i)	Any integer $k \geqslant -1$	1	
(d)(ii)	Any integer $k < -1$	1	
(e)	Tangent ruled at $x = -3$	B1	
	2.5 to 4	B2	dep on tangent drawn at $x = -3$ or close attempt at tangent at $x = -3$ M1 for rise/run also dep on tangent at $x = -3$ or close attempt at tangent at $x = -3$

	ANSWER	MARK	PARTIAL MARKS
(f)(i)	y = 6 - x ruled accurately	M2	M1 for correct line but freehand or ruled line gradient -1.1 to -0.9 , or through $(0, 6)$ but not $y = 6$
	$2.85 \leqslant x \leqslant 3$	A1	
(f)(ii)	[a =] 8 [b =] -48 [c =] -16 Paper Perfecti	on, Cra	B3 for 2 correct or $x^5 + 8x^3 - 48x^2 - 16 = 0$ seen or $-x^5 - 8x^3 + 48x^2 + 16 = 0$ seen or M2 for correct multiplication by $8x^2$ or B1 for answers $\pm 8, \pm 48, \pm 16$ or M1 for $\frac{x^2 \times x^3 - 8 \times 2}{x^2 \times 8} = 6 - x$ or M1 for correct multiplication by 8 or M1 for correct multiplication by x^2

154. 0580 _w17 _ms _42 Q: 8

	ANSWER	MARK	PARTIAL MARKS
(a)(i)	7a + 9p = 354 oe final answer	1	
(a)(ii)	[a =] 21 [p =] 23	3	M1 for correctly eliminating one variable A1 for $a = 21$ A1 for $p = 23$
(b)(i)	$\frac{2}{x}$	1	
(b)(ii)(a)	$\frac{2}{x} + \frac{3}{x-1} = 2$	M1	
	2(x-1)+3x=2x(x-1) oe	M1dep	Both sides of the equation could be over $x(x-1)$ at this stage Dep on M1 or 3 term equation with fractions but one sign error
	$2x-2+3x = 2x^2 - 2x \text{ oe} $ $2x^2 - 7x + 2 = 0$	A1	Answer reached with one correctly expanded line seen and no errors seen
(b)(ii)(b)	$\sqrt{(-7)^2 - 4(2)(2)}$	B1	or for $\left(x - \frac{7}{4}\right)^2$
	$\frac{-7+\sqrt{q}}{2\times 2} \text{ or } \frac{-7-\sqrt{q}}{2\times 2}$	B1	or for $\frac{7}{4}$ + or $-\sqrt{-1+\left(\frac{7}{4}\right)^2}$
	3.19 only	B2	B1 for 3.19 with other root or for 3.2 or 3.186 isw other root or for 0.31 or 0.314 or 0.3138 to 0.3139

AcelGCSE

155. 0580 w 17 ms 42 Q: 9

	ANSWER	MARK	PARTIAL MARKS
(a)	3	1	
(b)	$-\frac{2}{5}$ oe	2	M1 for $2(1-2x) = x+4$
(c)	-2x-7 final answer	2	M1 for $1 - 2(x + 4)$
(d)	26	2	B1 for h(5) soi or M1 for $(x^2 + 1)^2 + 1$
(e)	$\frac{1-x}{2}$ oe final answer	2	M1 for $x = 1 - 2y$ or $2x = 1 - y$ or $\frac{y}{2} = \frac{1}{2} - x$ or $y - 1 = -2x$
(f)	[p =] - 20 [q =] 26	4	B3 for [hgf(x)] = $4x^2 - 20x + 26$ seen and not spoilt by further working or M1 for $(1 - 2x) + 4$ M1 dep for $(their (5 - 2x))^2 + 1$ B1FT dep for $25 - 10x - 10x + 4x^2$

.56. 0580_w17_ms_43 Q: 2				
	ANSWER	MARK	PARTIAL MARKS	
(a)	343	1		
(b)(i)		1	CSE	
(b)(ii)	x^{10} final answer	1		
(b)(iii)	$9x^{16}$ final answer Perfection	ı, Cra 2 f	B1 for x^{12} or x^{16} or $(3x^8)^2$ seen	
(c)(i)	2(x-3)(x+3) final answer	2	M1 for $(2x+6)(x-3)$ or $(2x-6)(x+3)$ or $(x-3)(x+3)$	
(c)(ii)	$\frac{2(x+3)}{x+10} \text{ or } \frac{2x+6}{x+10}$ final answer nfww	3	M2 for $(x + 10)(x - 3)$ or M1 for $(x + a)(x + b)$ where $ab = -30$ or $a + b = 7$	

157. 0580_w17_ms_43 Q: 3

	ANSWER	MARK	PARTIAL MARKS
(a)(i)	1890	2	M1 for 126 ÷ 4 [× 60] oe If zero scored, SC1 for answer 31.5
(a)(ii)	103.95	4	M3 for $0.5 \times \left(\frac{44}{60} + \frac{55}{60}\right) \times 126$ oe or SC3 for figs 10395 or figs 104 or M2 for two correct area methods or for a full method without minutes to hours conversion or M1 for one correct area with or without minutes to hours conversion
(b)(i)	$126 \times 1000 \div (60 \times 60)$	1	
(b)(ii)	46.3 or 46.28 to 46.29	3	M2 for (1400 + 220) ÷ 35 oe or M1 for distance ÷ speed or 1400 + 220
(c)	180 nfww	4	B3 for final answer 3 OR M3 for $\frac{217.5}{72.5} \times 60$ oe or M2 for 217.5 ÷ 72.5 oe or $\frac{210 \text{ to } 220}{72.5} \times 60$ or $\frac{217.5}{72 \text{ to } 74} \times 60$
	Acel	G	or M1 for 217.5 or 72.5 seen or $\frac{215}{73} \times 60$

Paper Perfection, Crafted With Passion

158. 0580_w17_ms_43 Q: 7

	ANSWER	MARK	PARTIAL MARKS
(a)	9, – 6, 9	3	B1 for each
(b)	Correct graph	4	B3FT for 6 or 7 correct points or B2FT for 4 or 5 correct points or B1FT for 2 or 3 correct points
(c)	-3.5 to -3.35 and 0.8 to 0.9	2FT	FT their graph B1FT for either
(d)	$a = \frac{5}{4} \text{ or } 1\frac{1}{4} \text{ or } 1.25$ $b = -\frac{49}{8} \text{ or } -6\frac{1}{8} \text{ or } -6.125$	3	B2 for either correct or M1 for $[2]\left(x+\frac{5}{4}\right)^2$ seen isw or for $2x^2 + 4ax + 2a^2 + b$

159. 0580_w17_ms_43 Q: 9

	ANSWER	MARK	PARTIAL MARKS
(a)	$\frac{10}{x-0.5}$ oe final answer	1	Accept $\frac{20}{2x-1}$
(b)(i)	$\frac{10}{x - 0.5} - \frac{10}{x} = 0.25 \text{ oe}$	M1	FT their (a)
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1	Clears algebraic denominators or collects as a single fraction FT <i>their</i> algebraic fractions dep on two fractions with algebraic denominators
	$10x - 10x + 5 = 0.25x^2 - 0.125x \text{ or}$ better	B1	Expands brackets
	$2x^2 - x - 40 = 0$	A1	Dep on M1M1B1 and no errors seen
(b)(ii)	$\frac{1 \pm \sqrt{(-1)^2 - 4 \times 2 \times -40}}{2 \times 2} \text{ oe}$, C r B2 °	B1 for $\sqrt{(-1)^2 - 4(2)(-40)}$ or better or B1 for $\frac{1 + \sqrt{q}}{2 \times 2}$ or $\frac{1 - \sqrt{q}}{2 \times 2}$ or both
	-4.23 and 4.73 final answers	B1 B1	SC1 for -4.229 and 4.729 or for -4.23 and 4.73 seen in working or for -4.73 and 4.23 as final answer or for -4.2 or -4.22 and 4.7 or 4.72 as final answer
(b)(iii)	2 [hours] 7 [minutes]	3	B2 for 2.11 or 2.114 to 2.115 or 126.8 to 126.9 or 127 or M1 for 10 ÷ <i>their</i> positive root from (b)(ii)

160. 0580_w17_ms_43 Q: 10

	ANSWER	MARK	PARTIAL MARKS
(a)(i)	$2^2 \times 3^2 \times 5$ oe	2	M1 for 3 correct prime factors in a tree or table seen before the first error or for 2, 3, 5 identified
(a)(ii)	540	2	M1 for $2^2 \times 3^3 \times 5$ or 2×3^3 shown or answer $540k$

	ANSWER	MARK	PARTIAL MARKS
(b)	X = 8575	4	B3 for $X = 8575$ or $Y = 6125$
	Y = 6125		or $\mathbf{B2}$ for $a = 5$ or $b = 1$ soi
			or B1 for $1225 = 5^2 \times 7^2$ or $42875 = 5^3 \times 7^3$
			or M1 for $a^2 \times 7^2$ [= 1225] or $a^3 \times 7^{b+2}$ [= 42875]

AcelGCSE